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CHAPTER 1. INTRODUCTION

Statement of Problem

As electronics systems become more complex, there will be an increasing
need to develop receiver systems that can be completely integrated onto a single
semiconductor wafer in order to reduce size and weight, and to enhance
reliability. For a receiver system to be considered integrated, both the antenna
and the electronic circuitry must be fabricated on the same semiconductor wafer.
However, to avoid electromagnetic interference (EMI) problems the electronics
would have to be somehow shielded from the antenna. The question then
becomes how does one transfer energy between the antenna and circuitry in an
integrated system and realize the required electromagnetic shielding. A possible
solution is to acoustically couple energy from an antenna on one side of a
semiconductor wafer through a conducting ground plane to the electronics on the
other side [1]. This could be accomplished with the use of piezoelectrically active
thin films that are compatible with integrated circuit processing such as aluminum
nitride or zinc oxide. Using this technology, fully integrated receiver systems
could be developed where the circuitry is electromagnetically shielded by the
ground plane from the environment where the antenna resides. Possible
integrated receiver topologies are shown in Fig. 1-1 and Fig. 1-2. The structure
shown in Fig. 1-1 is overmoded because of the intervening non-piezoelectric
semiconductor layer between the two piezoelectric layers. This arrangement
requires a ground plane on both sides of the wafer, and a seal ring at the edge of
the wafer to electrically connect the ground planes. A pit has been etched in the
structure shown in Fig. 1-2 to remove the intervening semiconductor layer, and
the device is therefore fundamental mode. Note that for the arrangement shown
in Fig. 1-2 only one ground plane is required.

The theory of operation is as follows: the received signal excites a potential
difference between the microstrip antenna and the ground plane which generates
an acoustic wave in the piezoelectric material. The sound wave propagates
through the ground plane and semiconductor into the second piezoelectric layer
on the electronics side. Via the piezoelectric effect, a potential difference will be
formed between the conductor which is connected to the circuitry and the ground
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plane on the electronics side of the wafer. Thus, energy is transferred from the
antenna to the electronics acoustically. However, the signal will only be strongly
transmitted through the wafer at frequencies where the acoustic path length is an
integer multiple of a half acoustic wavelength long. So the arrangements shown
in Fig. 1-1 and Fig. 1-2 not only transmit the signal through the wafer but also
realize the narrow bandpass filter which is required after the antenna for many
types of receiver systems [2]. This type of filter structure is called a stacked crystal
filter (SCF) and is manufactured at the Microelectronics Research Center (MRC)
at microwave frequencies [3,4,5,6].

On the radiating side of the structure resides a microstrip antenna and a
bulk acoustic wave (BAW) piezoelectric transducer. To study the feasibility of
such a system, the performance of microstrip antennas with thin substrates and
metalizations needs to be investigated. Like the microstrip antenna, the
piezoelectric transducer is a resonant device and its electromagnetic radiation
characteristics must also be determined. The topology of the piezoelectric
transducer is similar to that of a microstrip antenna. Thus, the structure to be used
to study electromagnetic radiation from bulk acoustic wave devices is essentially
a microstrip antenna with a piezoelectric substrate as shown in Fig. 1-3.

Conductor (o)

b

Piezoelectric (c,e,e) d

Conductor (o)

Figure 1-3. Bulk acoustic wave device.



The purpose of this work is therefore two fold, first, to investigate
electromagnetic radiation from the structure shown in Fig. 1-3, and second, to
study the feasibility and optimum configuration of the integrated antenna
topologies shown in Fig. 1-1 and Fig. 1-2.

Review of Past Work

Piezoelectric devices have been analyzed by a variety of methods. For
devices which may be considered one dimensional, the displacement fields are
restricted to three modes; one longitudinal and two shear. Seven-port network
models have been developed to describe this situation. One of the ports is
electrical and the remaining six mechanical; an input and output port for each
mode [3,4,5]. This model consists of transmission lines, ideal transformers and
capacitors, and is equivalent to solving the coupled boundary value problem. If
only one mode exists, the seven-port network model reduces to the well known
Mason model for a piezoelectric layer [7,8]. Higher dimensional devices have
been analyzed with finite difference methods [9,10,11,12] , Green's functions [13]},
variational techniques [13,14] , and finite element methods [15,16,17,18). These
methods, however, assume no electromagnetic radiation, require substantial
computer power, and are just now starting to become practical for the analysis of
useful devices. See Appendix A for a reprint of a paper presented at the 1992
IEEE Ultrasonics Symposium which describes a two dimensional finite difference
method for the analysis of piezoelectric devices [12].

Microstrip antennas have been modeled by many methods with varying
degrees of success. Probably the simplest model is the transmission line model
where the microstrip antenna is assumed to behave like a section of transmission
line [19,20,21]. The radiation losses are modeled by impedances that load the
line, fringing is accounted for by slightly lengthening the line, and mutual coupling
between the ends is represented by feedback networks. The model can predict
the input impedance of the antenna for modes that are effectively one
dimensional (TMg1 or TMo2 ,etc.). However, the model does not predict the
radiated fields for the antenna nor can it handle two dimensional modes or
circular polarization. Therefore, the transmission line model is not sufficient for
the purposes of this study.



An exact representation may be obtained from the mixed potential integral
equation for stratified media where the Green's functions involve Sommerfeld
type integrals that must be evaluated on the real axis [19,20]. To actually obtain
numerical results the integral equation must be approximated numerically by
moment methods. This method, though very accurate, is difficult to implement
and provides more information than is required to solve the problem at hand.

A good compromise between accuracy and ease of implementation is
provided by the cavity model [19,21,22,23]. The cavity model is two dimensional,
capable of handling circular polarization and predicting the radiated fields of the
antenna. In the cavity model it is assumed that the antenna can be replaced by a
cavity of the same size with perfect magnetic walls on the sides and perfect
electric walls along the top and the bottom. The fields inside of the cavity may be
solved for by planar circuit techniques and the surface equivalence principle is
applied to compute the radiated fields [24,25,26]. The cavity model will be used
in this work to analyze the radiation and impedance characteristics of the
antennas to be investigated.

Some prior work of note has been done on radiation from piezoelectric
crystals. Mindlin and Lee computed the radiated power from rotated quartz plates
at thickness mode frequencies [27,28,29]. In the calculation, a quartz plate of
infinite lateral extent is subjected to a lateral AC electric field or harmonic stress.
The electric fields in the plate are then computed assuming no radiation, and
traveling wave electric fields are assumed to exist in the free space above and
below the plate. The amplitudes of the traveling wave fields are found by
matching boundary conditions at the free space-piezoelectric interface. The
purpose of the study was to compute the power lost to electromagnetic radiation
from the face of a bare piezoelectric crystal in order to find the rotated crystal cut
with the least radiation. The results would be useful for predicting the radiated
power loss from surface acoustic wave (SAW) devices. The calculations involve
no conductors and cannot be used to predict the radiation characteristics of bulk
acoustic wave (BAW) devices. The work being proposed here therefore differs
from the prior work of Mindlin and Lee in that a bulk acoustic wave device is being
analyzed as a microstrip antenna with a piezoelectric substrate.



CHAPTER 2. PIEZOELECTRIC DEVICE THEORY

Coupled Wave Theory

The analysis of a microstrip antenna with a piezoelectric substrate
requires the calculation of both electromagnetic and acoustic fields under the
conducting patch. Since in a piezoelectric material these quantities are coupled,
strictly speaking the coupled wave equations would have to be rigorously solved.
This would require a numerical method and large amounts of computer power.
Fortunately, due to the large differences between the velocity of sound and the
velocity of light in the medium, greatly simplifying approximations may be made
without seriously affecting the accuracy of the results. In this section the formal
coupled wave theory of piezoelectricity is presented, and simplifying
assumptions are stated and justified.

The fundamental laws of acoustics in matrix form are [8]

Newton'slaw: V.T=p—
ot 2.1)

Definition of strain: Vsv=—
ot (2.2)

where the acoustic field variables are defined as
Stress (N/mz) : T=[Ty T Tz T4 Ts TG]T
Displacement (m): u=[u; ux uz ]T

Strain (m/m): S$=Vsu=[Sy S, S; Ss Ss Se]T

Velocity (m/S): v=1=[v; vo vs]



The superscript T indicates transpose and the mass density is p (kg/m3). The
matrix divergence and gradient operators in rectangular coordinates are

92 0 o
aX1

0 i 0

aXQ
0 0 ai
T X
(V) =Ve= , ;
0 —
aX3 aXQ
9 5 9
0X3 aX1
9 9

| 0% O . (2.3)

The governing equations of electromagnetism are Maxwell's equations
which for source-free lossless media are as follows:

Faraday'slaw: VXxE=- o8
ot (2.4)

Ampere'slaw: VxH= a_D
(2.5)
Gauss'slaw: V.D=0 2.6)
Gauss'slaw: V.B=0 2.7)

where the electromagnetic field variables are



Electric field (V/m): E=[E; Ep Es]'
Electric flux density (C/m2): D=[Dy D D3]T

Magnetic field (AMm): H=[H; H, Ha]T

Magnetic flux density (Wb/m?) : B=[B; Bj Bs]T.

The curl matrix operator in rectangular coordinates is

Vx= — 0 -—

L aX2 ax1 . (2.8)

In a piezoelectric medium the acoustic and electromagnetic laws are

coupled through the constitutive relations

T=c:S-e"E (2.9)
S

D=¢:E+e:S (2.10)
B=pH

where the colons indicate a matrix multiplication. The tensors which characterize
the material in contracted notation are

€11 €12 €13 €14 ©15 €15
€=| €21 €22 €23 €24 €25 €26

. . . 2
Piezoelectric stress matrix (C/m”) :
€31 €32 €33 €34 €35 €36




C1t C12 Ci3 C14 Ci15 Cie

C2t Co2 C23 C24 C25 C26

: : 2 E C3t C32 C33 C34 C3s Cap
Stiffness matrix (N/m”): ¢ =

( ) C4t C42 Cs3 Ca4 C45 Cue

Cs1 Cs2 Cs3 Cs4 Cs5 Csp

Cet Ce2 Ce3 Ce4 Ce5 Ces

S €11 €12 &3
Permittivity matrix (F/m): € =| g5y €3 €23

€31 €32 €33
Since the material is assumed to be non-magnetic; u = 4 x 107 H/m. The
superscripts E and S mean under constant electric field and constant strain

respectively.
From these relations the following wave equations may be derived:

2
-VxVxE-—-ueS:a—E+ue:Vs a_v
2 ot

ot 2.11)
v 3E

v.c": Vsv=p — + ve: =
ot ot 2.12)

it is convenient to apply Helmholtz's theorem and separate the electric field into
rotational and irrotational parts [8]

E=E -V (2.13)
where the rotational part satisfies the Coulomb gauge.
V-E' =0

Substituting Eq. (2.13) into the wave equations (2.11) and (2.12):



10

2
-VXxVxE =pe: §———E—-ues Véiz)ﬂ,te Vs| — v
S ot ot (2.14)
V.cE: Vv = pa_l’- ve:2E yely
at® ot ot (2.15)

The wave equations (2.14) and (2.15) precisely describe wave phenomena in
piezoelectric material.

The first simplification one normally uses in piezoelectric device analysis
is called the quasi-static approximation. To illustrate this, assume that constant
amplitude fields are traveling in the xq-direction in a 6mm hexagonal crystal such
that the fields are proportional to

ei(cQt - k)

and the partial derivative operators become

i=-jk = jo ir_i:o

d
aX1 ot 0X3 aXQ

Materials such as aluminum nitride and zinc oxide crystallize in this lattice, and
the material tensors are of the form

Cit Ci2 Ci3 0 O
Ciz €11 Ci3 0 O
E Cig Ci3 Cz 0 O

0 0 O c44 O
0 0 0O 0 oc4
0 0 0 O 0

0 0 0 0O e O
e=( 0O 0 0 es O 0
es; €31 ezza 0 O O
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€11 0 0
S
e=l 0 g9 O
0 0 a3

Carrying out the indicated operations the wave equations in matrix form are

Cozu E11 0 0 11 ¢ €15 Va
0 m2u811-k2 0 Er=-jc02uk 0 |+okp 0
0 0 cozu €33 - k2 0 €31 V1
wzp - c11k2 0 0 es1 E5 0
0 cozp - ceek2 0 v=wnk 0 + jo k? 0
0 0)2P - Cadk® e1s E} e15 ¢

From the Coulomb gauge

Ei=0

it

and from the first wave equation

€15

o=- V3
loe | (2.16)

The remaining components of the wave equations yield the following dispersion
relations:

((Dalt g11-k°)Ep=0

((02P - Ceek®) V2= 0




12

2 , 2
(@ p-cak)Va=jok’ers¢ —Eq. (216) - (0 p-[Cas+€is/e11]K) va=0
2
(wp- c11k%) vy = (a1 w k) Ej
2 2,
(0kpes)vi=(wpess-k’) Es

The first two dispersion relations are for a purely electromagnetic wave
and purely acoustic wave respectively. Piezoelectricity does not have an effect
on these waves. The third equation is a purely acoustic wave, however the
elastic constant has been replaced by a "piezoelectrically stiffened" elastic
constant inside of the square brackets. The hybrid waves described by the
remaining dispersion equations are called quasi-acoustic and quasi-
electromagnetic waves. The piezoelectric coupling causes the wave numbers of
these waves to be perturbed. Eliminating one of the variables gives

2 2 2
(@p-ci1kd) (@ pesa-K)=pedo K 2.17)

This equation has two roots for k2 which are the wave numbers of the quasi-
acoustic and quasi-electromagnetic waves. For example, the relevant material
constants for aluminum nitride are [30]:

C11 =345 x 10° N/m?
es =-0.58 C/m2
£33=9.5x10"" F/m
p = 3270 kg/m3 )

The wave numbers for the hybrid waves are found to be

k&a = 3.74186740820 x 10" (rad/m)?
Kae = 4.7129540548 x 10° (rad/m)®
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The wave numbers for pure acoustic and electromagnetic waves are

Ka = 3.74186740772 x 10" (rad/m)?
kE = 4.7129540554 x 10° (rad/m)®

Note that difference between the hybrid wave numbers and pure wave
numbers is very small which means that piezoelectricity has a negligible effect on
EM and acoustic wave propagation. This is an important result because
electromagnetic wave propagation can then be handled with electromagnetic
theory and acoustic wave propagation with acoustic theory provided that the
piezoelectrically stiffened constants are used where required. In other words, the
rotational part of the electric field may be assumed to be zero when computing
acoustic fields. This is the quasi-static approximation for piezoelectric device
analysis [7,8]. The acoustic waves and potential field ¢ are piezoelectrically
coupled through Eq. (2.16).

One Dimensional Piezoelectric Device Analysis
Under the quasi-static approximation discussed in the coupled wave
theory section, the acoustic problem may be solved separately from the
electromagnetic problem. For actual device analysis, engineering notation is
usually easier to work with than the matrix form of the fundamental laws. The AC
steady-state, quasi-static equations of linear piezoelectricity in engineering
notation are:

Newton's law : My _ 'p0)2Uj
oxi (2.18)

Gauss'slaw: —=
[ (2.19)

and the constitutive relations
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du d
Tij = Ciju a—x'l‘ + Ekj % (2.20)
. 99
Di=ei 3 Eik o 221)

The repeated subscripts imply summation (i,j,k,| = 1,2,3), and the connection
between engineering notation and matrix notation is summarized in Table 2-1.

Table 2-1. Relationship between engineering and matrix notation

Engineering Matrix

11

22

33
23,32
13,31
12,21

a0 s, WON =

Using 2D and 3D finite element methods, Lerch determined that for a
piezoelectric resonator if a dimension was at least 10 times larger than any other
dimension, it would not significantly change the resonant frequency of the device
and could be neglected [16]. Thus, If the x4 and xo dimensions are much greater
then the x3 dimension, the device may be assumed to be one dimensional. In
other words, no variation of the fields is permitted in the xy and x» directions and
all derivatives in those directions will be zero. Under these assumptions the
piezoelectric device equations reduce to the following:

T3 pcozu
LT
dxa (2.22)
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dD3
=2 =0
dxa (2.23)
dug do
Tsj = cgj a3
TR (2.24)
dug do
D3 = e3k3 —— - €33 —
T e P (2.25)
Substituting Eq. (2.25) into Eq. (2.23) and integrating twice, the potential is
o= S3k3 U+ I'xg+A
€33 (2.26)

where I' and A are arbitrary constants of integration. From Eq. (2.24) and Eq.
(2.26) the stress may be written as

- du
Taj = Cajka E—(S +e33 2.27)

where the stiffened elastic constant is

= €33j €3k3
Cajka = Cajka + —————

€33

Substituting Eq. (2.27) into Eq. (2.22) and expanding j,k=1,2,3 results in the
following set of coupled wave equations:

2 2 2
- duy - dus - d"us 2
Ca113 —+Ca123 — + Catag —~ + PO Uy = 0
dxa dxs dxa (2.28a)
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- d2U1 - U — d us 2
C3213 —+ Caz23 — + Cazaz —— + pO Uz = 0

dx3 dx3 dx3 (2.28b)
- d2U1 - d2U2 - d2U3 2
Caa1a —, +C3323 —, + Cagas — + p0 Uz= 0

dxa dxs dxs . (2.28C)

Expanding Eq. (2.26) for k=1,2,3, the potential is equal to

e e
- =313 + 323

U Up+ 2338 4 T xa + A
€33 €33 €33 . (2.29)

¢

Substituting Eq. (2.29) into (2.25) the electric flux density is a constant given by
D3=-eal ' (2.30)

The arbitrary constants I" and A will be nonzero only in the presence of an
externally applied potential. If there is no externally applied potential then I" and
A will be equal to zero, and the relationship between the potential and acoustic
fields Eq. (2.29) will then be of the same form as Eq. (2.16). In other words there
will be a nonzero electric field traveling along with the acoustic wave, but the
electric flux density will vanish because I'=0. To be more specific, the dot product
of the acoustically generated electric field and electric flux density is zero.
However, a nonzero electric flux density vector may exist orthogonal to the
acoustically generated electric field. This means that the electric energy density
is zero, and that energy may not be transferred between the acoustic and electric
field unless an external electric flux density field is applied parallel to the
acoustically generated electric field [7].

As can be seen from Eq. (2.28), the one dimensional wave equations
predict the existence of three propagating modes: one longitudinal and two
shear. Eq. (2.28) is the set of differential equations that must be solved in one
dimensional piezoelectric device analysis. In the following sections comprising
this chapter, the one dimensional equations will be solved for device geometries
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of interest. These solutions are required to facilitate the analysis of the structures
discussed in the introduction of this thesis.

Fundamental Mode Resonator Analysis

A fundamental mode resonator consists of a one dimensional slab of
piezoelectric material and perfectly conducting electrodes of area A. The
conductors, assumed to be massless and of zero thickness, are applied to each
face of the device as shown in Fig. 2-1. The acoustic wave is assumed to travel
in the xa direction, and the device is a thickness mode resonator. An x3-directed
external field is applied via the conductors. Since the acoustic wave travels in
the same direction as the externally applied field and the acoustically generated
electric flux density field must be zero; the electric flux density in the device must
be totally supplied by the applied field.

| , Massless Conductor
X3
WA A AV S S I I A LA AN A A A _A_d
Ve jot r\D Piezoelectric
,,,,,,,,, . + 0
L T—-— Massless Conductor
A\

Figure 2-1. Fundamental mode bulk acoustic wave resonator
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The current flowing into the device is related to the electric flux density by

|=f J-ds =-j(.l)j D3 dS= j(OSaaAF
A A (2.31)

where the minus sign appears because differential vector dS is directed normally
out of the top surface. Solving for I" one obtains

|
joegaA (2.32)

T'=

Thus, in a thickness mode resonator, the independent variable is the input
current and the dependent variable is the potential difference across the device
[7]. Eq. (2.32) is a boundary condition equation for the resonator problem. The
remaining boundary conditions required to uniquely describe the device are
ascertained from the assumption that the resonator is surrounded by air. Air
provides a negligibly small restoring force, and traction-free boundary conditions
may be applied to the top and bottom surfaces of the device. Mathematically, to
satisfy the traction-free boundary conditions

T5=0 (2.33)

must be enforced at the top and bottom surfaces of the resonator.

In a one dimensional bulk acoustic wave resonator, one is normally
interested in the characteristics of only one of the three possible propagating
modes. Assuming that the modes are non-degenerate and weakly coupled, the
coupled set of wave equations given in Eq. (2.28) may be approximately
decoupled as

2
- 2
Css 9__\121_ +pw uy=0
dxa (2.34a)
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2

— 2

Caa d—u: +p0 Up=0 |
dxa (2.34b)

- 2
Caz 9_”21_3_ +pw uz=0
dx3 (2.34c)

where the matrix notation has again been employed. The stress equations
reduce to

- dU1
Tay=css—+ea3s
dX3

(2.352)
— du
Ta2o=Ca4 d_2 +exl
X3 (2.35b)
- du
Taz=Caa a—g- +e33T
X3 (2.35¢)

For example, assume that the only mode excited is the longitudinal
thickness mode. For this mode, the governing differential equation is Eq. (2.34c)
and the stress field is given by Eq. (2.35¢). To simplify the notation drop the
subscripts and define the following:

U= Uujs
X = X3
e =¢€a3
€ =E€33
C=E33

from which the acoustic wave number is given by

2
i#=po /¢ (2.36)
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The governing differential equation is then

2
d—l; +Ku= 0
dx (2.37)
and the potential function is
¢=(e/e)u+Tx+A (2.38)

Since the bottom plate is grounded,
$(0)=0 (2.39)

The general wave solutions to Eq. (2.37) are

u(x) = A cos kx + B sin kx (2.40)
O(x) = (efe) Acoskx+ (e/e) Bsinkx+ T x+ A (2.41)
T(x)=-ckAsinkx+ckBcoskx+el (2.42)

where A, B and A are arbitrary constants and are found from the boundary
conditions. For an input current |, T" is given by Eq. (2.32), and by applying the
boundary condition equations at x=0 and x=d one obtains the following system of
equations for the arbitrary constants:

o(0)=(ele) A+A=0

TO)=ckB+el'=0

T(d)=-ckAsinkd+ckBcoskd+el=0
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The solution to this system is

A= eltan ©
joeAck

B=- el
joeAck

K2 tan 0
k

A=-

The electromechanical coupling coefficient is defined as

2 e2
K =—
EC

and the half phase across the device is

Solutions for the variables of state are then

w0 = ! [sin (kx - e)}
joeAck

cos 6
| K2 sin (kx - ) + sin 6
o(X) = ——|x- 3
joeA cos 6

joeA cos 6

E(=- Vo= —'—'—[1 P s x-8) 9’}

(2.43a)

(2.43b)

(2.43c)

(2.44)

(2.45a)

(2.45b)

(2.45¢)
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The potential difference across the resonator is found from Eq. (2.45b).

joeA 0 (2.46)
The impedance of the resonator is then
22¥ . [1- @_e}
joCo 6 (2.47)

Series resonance is defined as the frequencies where Eq. (2.47) is equal to zero
and may be found by solving the transcendental equation

2
B=x tan@ (2.48)
Parallel resonance is where Eq. (2.47) becomes infinite which occurs when

06=— n=1_35,..
. (2.49)

Note that the impedance of the resonator is capacitive until series
resonance and then is inductive for the region between series and parallel
resonance. This inductive region is where the device is most useful generating
large amounts of inductance for high-Q applications. Shown in Fig. 2-2 is the
measured impedance locus for a fundamental mode aluminum nitride resonator
that was fabricated at the MRC. The device consists of 400um x 400um
aluminum
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Figure 2-2. Measured fundamental mode AIN resonator impedance
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conductors and a c-axis directed aluminum nitride film of a nominal thickness of
5um. The series and parallel resonances were measured to be 1.0190 GHz and
1.0485 GHz respectively. Upon inspection of Fig. 2-2, some features of the
measured data differ from what would be predicted by Eq. (2.47). First, if the
material were lossless the impedance would be purely imaginary and the
impedance locus would follow the edge of the Smith chart. In reality there are
losses which may be represented by allowing the permittivity and elastic
constants to become complex [13].

e=¢ (1 - jtand) (2.50)

c=c+jon (2.51)

The dielectric loss tangent is tand and n is the viscosity of the medium. Also
evident in Fig. 2-2 are the small resonances which give the curve a rough
appearance. These spurious resonances appear due to the finite width
dimensions of the device, and will not be predicted by a one dimensional theory.
The two and three dimensional numerical techniques discussed in Chapter 1
and Appendix A do however predict the phenomena.

With the exception of the spurious resonances, this device may still be
modeled with the one dimensional theory presented in this section. The
aluminum nitride material constants required to characterize the longitudinal, x3-
dependent thickness mode are [30]:

Cas = 395 x 10° N/m?
€3z = 1.55 C/m2
£33=9.5x10"" F/m
p = 3270 Kg/m®

To improve the agreement with the experimentally observed resistance of 466Q
at parallel resonance, the elastic and permittivity constants were given the
following imaginary parts.
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Cas = (395 +j1.0) x 10° N/m?
€33 = (9.5 -j0.25) x 10" F/m

From Eq. (2.49) with n=1 and the measured parallel resonance at 1.0485 GHz,
the effective thickness of the device is about 5.41um. From the location of the

series resonance at 1.0190 GHz and Eq. (2.48), the electromechanical coupling
constant is found to be about k2=0.068. This compares well with the value of
x2=0.060 computed from Eq. (2.44). The devices fabricated at the MRC are
characterized with Cascade Microtech coplanar waveguide wafer probes, and
the electrical connection to the ground plane is via capacitive coupling. The
fringing capacitance between the center conductor which connects to the top
plate of the resonator and the surrounding ground plane may be accounted for
by increasing the resonator area. It was found that agreement between
measurement and theory could be improved by increasing the resonator size
from 400um to 424um and adding 4.3Q of series resistance. The need to add
series resistance is probably associated with the metalization of the fabricated
device. The computed impedance of the resonator using the corrected
parameters is shown in Fig. 2-3 superimposed on the measured data. Note that
the agreement between experiment and theory is good, however the spurious
responses are not predicted.

Fundamental Mode Stacked Crystal Filter Analysis

A fundamental mode stacked crystal filter consists of two piezoelectric
plates that are bonded together back to back as shown in Fig. 2-4. Being a two-
port device, the two-port network parameters can be calculated to determine the
transfer function. The y-parameters are probably the easiest to compute because
they impose homogeneous Dirichlet boundary conditions for the potential on the
region 2 plate, and this boundary condition may be used directly when solving
the piezoelectric device equations. The basic operating principle of the device is
as follows. One of the plates is driven by a voltage source which generates an
acoustic wave in region 1. This wave propagates through the center conductor
generating a nonzero potential in region 2.
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Figure 2-3. Predicted and measured AIN resonator impedance
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Figure 2-4. Fundamental mode stacked crystal filter

Consider the same assumptions that were used for the resonator analysis,
and assume that material in regions 1 and 2 have the same crystallographic
orientation. If one of the plates is twisted with respect to the other, the
displacements in the x4 and xo directions will no longer be zero and the coupled
wave equations Eq. (2.28) will need to be solved. The governing differential
equation is given by Eq. (2.37), and the potential is given by Eq. (2.38). The
boundary conditions at the air-piezoelectric interfaces are the following:

¢1(dq) =1
$1(0) = 02(0) = ¢2(-d2) = 0
T1(d1) = To(-d2) = 0

where the subscripts refer to region 1 and region 2 in Fig. 2-4. The continuity
conditions at the region 1 - region 2 interface are

T1(0) = T2(0)
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u1(0) = uz(0) .
Region 1 solutions are given by
u1(x) = A cos kx + By sin kx
$1(x) = (e/e) Ay cos kx + (e/e) By sin kx + Ty X + A4
T1(x) = - ck Ay sin kx + ¢k By cos kx +e T’y

and region 2 solutions are
uz(x) = Az cos kx + B2 sin kx
$2(x) = (e/e) Ax cos kx + (e/e) Bo sin kx + Ta X + Ao

Ta(x) =-ck Ag sinkx + ck Bo cos kx+e Tz

Applying the boundary conditions at the boundaries of region 1 gives
$1(0) = (e/e) Ay + A1 =0
d1(dy) = (e/e) Aq cos kdy + (efe) By sinkdy + T3 dy + Ay =1
T1(dy) =-ck Ay sinkd; +ck By cos kdy +eT'; =0.
Applying the boundary conditions at the boundaries of region 2 gives
$2(0) = (ele) Az + A2 =0
do(-d2) = (e/e) Az cos kda - (ef/e) Bosinkdg -Ta do + Ax = 0

Tao(-do) =ck Aasinkdo +ck Bacos kds +e s = 0.

(2.52a)

(2.52b)

(2.52¢)

(2.53a)

(2.53b)

(2.53c)
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The continuity conditions at the interface between region 1 and region 2 are as
follows:

ckBy+eT1=ckBa+el>

A=Ay
Defining

8¢ = kd,

02 = kdo

the system may be written as a matrix equation as shown in Fig. 2-5. The
solution of this matrix equation gives the unknown constants for the fields in Eqgs.
(2.52) and (2.53). It is important to note that these field solutions are valid only for
the short circuit condition shown in Fig. 2-4. These fields would be different for
some other excitation. To compute the y-parameters the currents iy and iz need
to be evaluated. From the resonator analysis section these currents are

i1 =f Ji1:dS =- ](Dj D1dS = jwel" A
S S (2.54a)

o= f Jo-dS =- ](l)f D2dS = jwel2A
S S (2.54b)

Since the voltage applied to port 1 is unity, for the case of equal thickness plates
the y-parameters are symmetric and equal to the port currents.

Y11 =Y22 =iy (2.55a)

Y21 =Y12=l2 (2.55b)
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[ cos 64 O sin®y 0 edi/e 0 ele 0 Aq ele
0 cos@, 0 ~-SiNB2 0 .47 o ele|| A,
-sinBy 0 cosBy O e/ck 0 0 0 B

0 sinb2 Q0 cos0s 0 e/ck 0 0 B>

0 0 1 -1 e/ck -e/ck 0 0 Iy
1 - 0 0 0 0 0 0 Iz
ele 0 0 0 0o o0 1 0 || A

| 0 e/e 0 0 0 0 0 1T 1 L42] [

Figure 2-5. Fundamental mode stacked crystal filter matrix equation
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If the plates are not of equal thickness, the excitation voltage will need to be
applied to port 2 with port 1 short circuited and the calculation repeated. For a
given source and load impedance Z, the S-parameters may now be computed
with the following:

gy, = (=Y Zo)(1 + Y2 Z0) + Y12 yar Zo

(1 + Y11 Zo)(1 + Y22 Zo) - Y12 Y1 Z& (2.56a)
-2y122
Sp= Y12 £o -
(1 + Y11 Zo)(1 + Y22 Zo) - Y12 Y21 Zo (2.56b)
-2y» Z
(1+ Y11 Zo)(1 + Y22 Zo) - Y12 Y21 Zo (2.56¢)

S = (1 + Y11 Zo)(1 - Yoo Zo) + Y12 Va1 Z&
(14 Y11 Zo)(1 + Yo Zo) - Y12 Y1 Z3 _ (2.56d)

Plots of the S-parameters for a fundamental mode aluminum nitride
stacked crystal filter that was fabricated at the MRC are shown in Fig. 2-6 and Fig.
2-7. The electrode plates are 400um x 400um in size and the aluminum nitride
layers are nominally 5um thick. Note the multiple passbands in the insertion loss
plot. The first passband occurs where the entire structure is one half of an
acoustic wavelength thick while the next two passbands occur when the device is
one wavelength, and one and one half wavelengths thick respectively.
Superimposed on the measured data are the S-parameters predicted by the
theoretical one dimensional analysis presented in this section. Loss has been
included in the analysis by using the following complex stiffness and dielectric
constants:

Cas = (395 +j3.3) x 10° N/m?
eas = (9.5-j0.25)x 10" F/im _
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To obtain agreement between experiment and theory for the insertion loss
of the filter, the imaginary part of the complex elastic constant had to be
increased substantially over the values used in the resonator analysis sections.
Since the dielectric loss tangent is unchanged, the additional observed loss is
being lumped into the complex elastic constant. Processing differences in the
AIN film deposition or poor quality metalization would necessitate an increase in
the imaginary part of the elastic constant. The optimized aluminum nitride film
thickness was found to be 4.88um. The agreement with theory is excellent
except for the spurious passbands which are due to the finite width dimensions of
the device.

Overmoded Stacked Crystal Filter Analysis

An overmoded stacked crystal filter is similar to a fundamental mode
device except an intervening layer of non-piezoelectric material is between the
piezoelectric layers as shown in Fig. 2-8. Under the same assumptions as those
used in the fundamental mode filter analysis, the fields in the piezoelectric
regions 1 and 2 are given by Egs. (2.52) and (2.53). Due to the shielding of the
ground planes, the fields in the non-piezoelectric region 3 are just acoustic.
These are given by

us(x) = Az cos kx + Bs sin kx (2.57a)
Ta(x) =-Cs k Az sin kx + Cs k B3 cos kx ) (2.57b)

where Cs is the elastic constant for the longitudinal thickness mode of the non-
piezoelectric medium. The wave number in the non-piezoelectric medium is
related to its elastic constant and density ps by

The boundary conditions for the problem are
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¢1(dq) =1
$1(0) = ¢2(-h) = ¢2(-h - dz) = 0
T1(d1) =Ta(-h-dp) =0
T1(0) = T5(0)
Ta(-h) = Ta(-h)
u1(0) = u3(0)

uz(-h) = ua(-h)

i1—

WA A A AR A A N S A S A T A A A A A

joot
jo Piezoelectric (region 1)

AV AT AV AV SV AV LT AN A A A AT AT A

Non-piezoelectric (region 3)

Piezoelectric (region 2)

VA A A A A A A A A A A A A

] :—»

Figure 2-8. Overmoded stacked crystal filter

5
4

- X == (h+dy)
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Applying these boundary conditions one obtains the following system of
simultaneous equations:

$1(0) = (e/e) Ay + A1 =0
¢1(dq) = (e/e) Ay cos kdy + (e/e) By sinkdy +T1 dy + A1 =1
T1(dy) = - ck A sin kdy + ck By cos kdy +e Ty =0
do(-h) = (efe) Ao cos kh - (e/e) Bosinkh -Toh + A2 =0
d2(-h - d2) = (e/e) Ao cos k(h + do) - (efe) Basink(h+da) -Ta (h+da) +Ap=0
To(-h - d2) = ck Az sin k(h + d2) + ck Bz cos k(h + dp) +e T2 =0
Ai=As
ckBy +eTy =i€cs Bs
Az cos kh - Bp sin kh = Ag cos kh - Basin kh

ck Ag sin kh + ck Bz cos kh + e T = kcs Ag sin kh +kes Bg cos kh

To simplify the expressions define the following:

0, = kh
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These expressions may be arranged into a matrix equation for the
unknown constants as shown in Fig. 2-9. The port currents, y-parameters, and S-
parameters for the device are computed with the same equations as for the
fundamental mode stacked crystal filter. The response for an overmoded stacked
crystal filter is shown in Fig. 2-10 and Fig. 2-11. This device consists of the same
piezoelectric layers and conductor topology as the fundamental mode filter from
the previous section, however a 315um thick intervening layer of silicon has
been included. Note that the response of this device is overmoded resembling
that of a comb filter, and the passbands are narrowband. An overmoded stacked
crystal filter where the intervening non-piezoelectric layer is between the
piezoelectric layers has not yet been fabricated at the MRC, and experimental
data is not available for comparison with theory. This type of filter is, however,
what feeds the microstrip antenna in Fig. 1-1, and fabrication efforts are
underway. |
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CHAPTER 3. MICROSTRIP ANTENNA THEORY

Planar Circuit Analysis

A typical microstrip antenna consists of a radiating element fed by a z-
directed current, a dielectric slab and a conducting ground plane as illustrated in
Fig. 3-1. The conductors are characterized by a finite conductivity o, and the
dielectric by its permittivity . The ground plane and dielectric layer are assumed
to extend to infinity in the x and y directions, and the radiating element has
dimensions, a x b. The dielectric layer is of thickness d << A, and for the moment
the radiating element is assumed to have negligible thickness yet be thicker than
a skin depth. Since the thickness of the dielectric layer separating the antenna
from the ground plane is much smaller than a wavelength, the electric field can be
assumed to be z-directed and have no z-dependence [24,25]. Under these
assumptions, the electric field will obey the Helmholtz equation.

2 2

5 .
a EZ + a EZ + @ ugEz = j(l)uJZ(le)

ax?  ay? (3.1)

The magnetic field under the patch is found from Faraday's law Eq. (2.4).

H="1vx2E,=—1|x%z. ;o
jop jop| dy ox

(3.2)

The magnetic field will excite surface currents on the bottom surface of the patch

Js=§J5x +’y\sz=HXH(d)= 1 {;8E2+§8EZ]

jo! ox oy (3.3)

where the normal vector is directed in the negative z-direction as shown in Fig. 3-
1a. Since the patch edge is an open circuit one may assume that the surface
currents do not flow off the edge of the patch, and the component of the current
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Figure 3-1. Coaxially fed microstrip antenna
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normal to the edge of the patch must then be zero. This is effectively a no fringing
fields approximation where at the patch edges

Nde=0 (3.4)

The normal vector in Eq. (3.4) is now outwardly directed from the patch edge as
shown in Fig. 3-1b. Substituting Eq. (3.3) into Eq. (3.4), the boundary condition in
terms of the electric field at the patch edge is

%z _,
on (3.5)

This boundary condition states that the tangential magnetic field at the patch
edges must be zero which is the same condition obtained if the patch edges were
perfect magnetic conductors; hence the term magnetic wall boundary condition.
In reality the fields do fringe at the patch edges, and this may be accounted for by
the use of effective dimensions and dielectric constant. For a circuit of width W
and length L, the dielectric constant is replaced by an effective dielectric constant
and the length dimension is extended.

L—-L+2AL
€ — Eoff
Defining the parameter
o =W/d
the effective dielectric constant may be estimated with [20]

e+l a1y 100™
2 2

Eeff =
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o + (a/52)° L
o +0432 | 187

1

T=1+-11n |1+ @/18.1)]

0.053
Er - O.Q:I

A =0.564
&+3

An approximate length extension equation is given by [20]

AL=d €1&aks
&4

where

.81 0.8544
ot +0.26 [|a e 0.236

0.81 8544
o - 0.189 | o0 >4 0.87

E1 = 0.434907

0.371
o

. -
2.358¢, + 1

- ' . /
, 0:5274 tan 1[0.084 o 2 52]

0.9236
Eeff

€a=1

£ = 1+0.0377 tan 0,067 o **[6 - 5 6% 4]

Es=1-0.218¢e %,

The fringing fields at the edge of the patch have the effect of changing the
resonant frequency of the microstrip antenna, and through the use of the effective
parameters the resonant frequency of the structure may be accurately predicted.
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The solution of Eq. (3.1) under the boundary conditions given by Eq. (3.5)
is planar circuit analysis [24,25]). The most general solution of this equation is

Ez(x,y) = f oo G(x,Y | Xo,Yo) Jz(Xo,¥o) dxodyo
=1z}

(3.6)

The Green's function for a rectangular patch under the perfect magnetic wall

boundary condition is given by
- JOR @ OnOim COS(kxX) cOS(Kyy) cos(kxXo) cOs(k

G(X,YIxo,yo)= Jbuzz n%m (X) 2( yy2) 2(XO) (VYO)

m=0 n=0 Kx +Ky - K (3.7)
mn nw 2 2
“=Z Wy Kmow
0j=2-djp

and 3jp is the Kronecker delta function. Green's functions exist for other canonical
shapes such as triangles, circles, etc. Structures for which Green's functions do
not exist may be analyzed with the segmentation-desegmentation method or the
contour integral method [24,25]. Solutions obtained with Eq. (3.6) require the
evaluation of a double summation resulting in long computation times.

It can be shown that a small coaxial feed or a transmission line feed may
be approximated by a z-directed constant current strip of width w as shown in Fig.
3-1b. The current strip for the microstrip transmission line feed is of the physical
width and location of the line. For a coaxial feed of radius r an equivalent strip
feed of width

w=4482r (3.8)

is centered on the location of the coaxial feed as shown in Fig. 3-1b. Whether the
current strip is oriented in the x or y direction was not found to change the result



45

obtained for the input impedance of the antenna. Since a current strip is one
dimensional, the solution to the Helmholtz equation may be obtained with the
mode matching method and written in terms of a single summation, which is more
rapidly convergent then the double summation in the Green's function solution.
The result obtained with the mode matching method is mathematically equivalent
to the Green's function solution, and may be considered as summing in closed
form the inner summation [22].

Solutions for the electric field under the patch which satisfy the Helmholtz
equation and the magnetic wall boundary conditions may be expressed as

Ez(xY) = Y, Amcos(kxX) cos(Bmy) . 0<Yy<VYo
m=0 (3.93)

Ez(XY) = Y, Bmcos(keX) cOSBm(y-b) , Yo<y<b
m=0 (3.9b)

Br= VK- Ky |

The presence of the feed at y=yo requires the separation of the solutions in Eq.
(8.9), and A, and By, are arbitrary constants to be found by matching the
boundary conditions at the feed. The boundary conditions at the feed position are
the continuity of the tangential electric field and a jump condition of the tangential
magnetic field.
Ez(X,Yo) = Ez(X.Yo) (3.10)
A x[HEoy) - Hxyo)| = 2 20 (3.11)

The jump condition for the magnetic field leads to

’);x Q[Hx(x,%) - Hx(x,y;)] = ;Jz(x) = Hx(x,yZ) = Hx(X,Yo) = - J2(X) . (8.12)
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The source current density may be expanded as a Fourier series of resonant
modes.

-

Jz(X) = Y, m cos(kux)
m=0 (3.13)

. 2 - 8m0 a V
Im= Jz(x) cos(kxx) dx
& Jo (3.14)

For the 1A (rms) constant current strip feed model the Fourier constants are

, 2"8m0 x°+W/2 2"6m0 .
jm W cos(kyx) dx = " cos(kyxXo) sinc(kxw / 2)

X-w/2 . (3.15)

To preserve the continuity of the electric field, match the resonant modes at y=yo
> Am cos(kxx) cos(Bmyo) = 3, Bm cos(kxX) cOSBm(yo-b)
m=0 m=0

which leads to

B, = Ay 208 (BmYo)
cosBm(Yo-b) .

The x-component of the magnetic field is found from Eq. (3.2).

Hx(x,y) = L Y, AmBm cos(kex) sin(Brmy) , 0<y<y,
JOU m=0

Hy(xy) =—— 3 Brfim cOS(keX) Sin Brolyb) , Yo<y<b
JOU m=0
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To satisfy the jump condition for the magnetic field, match the resonant modes.

1 < . . <
13 [Br B CoS(koX) 5in Brn(yo™D) - Am Prm cO8(k3) i (Beny)] == 3 Jm 08 (k)
JOLL m=0 m=0

Solving for the mode amplitudes one obtains

A= im {imu COSBm(YO'b)}

Brm sin(Bmb) (3.16)
Bm = jm ’:Jmll Cos(ﬁmyo)J
Bem sin(Bmb) | (3.17)

Egs. (3.9), (3.16) and (3.17) constitute approximate solutions for the electric field
of a rectangular patch over a conducting ground plane, and these resuits are
used in order to predict the characteristics of the microstrip antenna.

Far Field Radiation
In order to estimate the far field radiation pattern and radiated power for the
antenna, the radiated far fields must be found. One way to approximate the far
fields is to apply the equivalence principle to the structure as shown in Fig. 3-2.
The idea behind the equivalence principle is to surround the source by a closed
surface S and to place equivalent sources on the closed surface.

Figure 3-2. Application of the equivalence principle
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The equivalent sources produce the same fields outside of the closed
surface as did the original source, but produce null fields inside the surface. The
equivalent sources are found by the following [26]:

M; =Exn (3.18)
Js=nxH (3.19)

where the fields are approximated by planar circuit analysis. Due to the magnetic
wall boundary condition, the tangential magnetic field and thus electric surface
current will be zero on the sides. Similarly, assuming the ground plane and patch
to be perfect electric conductors the tangential electric field and thus the magnetic
surface current density is zero on the top and bottom surfaces. If the top
conductor is much thicker than a skin depth, then the electric current density will
reside mostly on the bottom of the patch and the current on the top of the patch
will be approximately zero. If the conducting patch is not much thicker than a skin
depth, then the amount of tangential magnetic field that tunnels through the
conductor will have to be computed, and some electric surface current will exist
on the top surface. The magnetic surface current density on the sides is given by
Eq. (3.18), and is the main source of the radiated fields. Thus, the radiation model
for the microstrip antenna is shown in Fig. 3-3 where the circle with a dot indicates
a vector directed out of the page.

Figure 3-3. Radiation model for the microstrip antenna
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The model consists of a sheet of electric current density on top of a
grounded infinite dielectric slab and a ribbon of magnetic current density
embedded in the dielectric slab. The total magnetic current K that exists at the
periphery of the surface is found by integrating the magnetic current density over
the thickness of the substrate. ‘

0
K=f M, dz = M:d
-d (3.20)

The approach to finding the far field radiation from the model in Fig. 3-3 is
to first find the radiated far fields from infinitesimal horizontal Hertzian dipoles of
electric and magnetic current. To illustrate this point, consider Fig. 3-4. Shown in
Fig. 3-4a is an x-directed infinitesimal electric current dipole of unit strength
residing on a grounded dielectric. Expressions for the Hertzian dipole far fields
are available in the literature, and are found by using reciprocity and applying the
transmission line model for plane waves impinging on a dielectric at oblique
incidence [19,26]. The radiated far fields for the electric current dipole are

Egex(r,e.tp) = - A(6) [OHo ikt 0osp cosQ
4nr (3.21a)
En(r6,0) = B(6) 122 67 sing
4nr (3.21b)

where the factors A(8) and B(8) account for the presence of the grounded
dielectric. These factors are given by

A®) = 2 tan fd
tan Bd - jer (ko / B)coso (3.22a)
B(6) 2 tan Bd

" tan pd - j(B/ ko)sece (3.22b)



50

(a) Infinitesimal electric current dipole

I3
f -‘L> Msx Az

(b) Differential magnetic current element

N
T vf

Er —e Msx -— V/m
—
—

(c) Normalized infinitesimal magnetic current ribbon

Figure 3-4. Calculation of the infinitesimal dipole far fields
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where

B=KoV e -sine

Similarly, the expressions for a y-directed electric current dipole of unit strength
are given by

EN(r,6,0) = - A8) 12 e cos sing

4xwr (3.23a)
Eh(r0,0) = - B(O) 122 6™ cosg
4mr . (3.23b)

The calculation of the dipole fields for the magnetic current ribbon
embedded in a grounded dielectric substrate is slightly more complicated.

Shown in Fig. 3-4b is an x-directed differential magnetic current element of
strength Mgx Az. The differential radiated far fields for the current element

embedded in a grounded dielectric substrate at position -z are [19]

h j -
AEG™ =2 A@)] Ao K ging S5 PEH)
4nnor cos fid (3.24a)
h j -
AEq " = [2 - B(G)] 0o oI 6058 cosg cos Blz+d) \y Az
4mnor cos fd (3.24b)

where the free space impedance is equal to

T]o=’w o
€o .

The radiation model for the microstrip antenna, however, requires the
calculation of the radiated far fields from a ribbon of magnetic current density
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flowing on the sides of the closed surface S. A ribbon of magnetic current density
may be constructed from differential current elements as shown in Fig. 3-4c. Let
the magnetic current density be normalized such that the total magnetic current is
of unity strength. From Eq. (3.20) the magnetic current density is then equal to

0
Kx = I Msx dZ= Msxd =1 = Msx =
-d

Q=

The radiated far fields from the infinitesimal magnetic current ribbon are found by
integrating the differential fields over the substrate thickness. In the far field the
source to observer distance r, and polar angles 6 and ¢ are approximately
constant over the substrate thickness, and may be left out of the integration.
Performing the integration, the radiated far fields from the normalized x-directed
magnetic current ribbon are

° o7 ging

4mnor (3.25a)

™(r,0,0) = f AET™ iy [2 - Age)] J2H

hnr'x(reqo) fAEhmx [2 B(e)] oK e cose cosg
4““0' (3.25b)

where in limit as Az approaches dz the integration factor is equal to

0 0
= f Mg, SO BEHd) ) 1 f cos f(z+d) . _tan Bd
¢ ompd  C4 cosfd Bd . (3.26)

Similarly, the radiated far fields for the normalized y-directed ribbon of magnetic
current are equal to

hmy

(16.0) = - l4 2 - A@)] 1282 & Gogg
41mof (3.27a)
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hmy

Ey

(r.8,9) = lg [2 - B(e)] 1o okl 0550 sing
4nnor : (3.27b)

The total dipole far fields are just the summation of the vector components.

X Electric dipole: EIX (r,0,0) = ¢ Ez,ex (1.8,0) + 6 o (1,6,0) (3.282)

v Electric dipole: EL (r,0,0) = ¢ Ez,ey (r.8,0) +0 Egey (r.6,9) (3.28b)
X Magnetic dipole: E™ (r,6,0) = @ E?,,"“ (r6,0) +6 Egmx (r8.9) (3.28¢)
¥ Magnetic dipole: Efsq (r,8,0) = E':Pmy (r0.0) + 0 Eg ™ (r.0,0) (3.28d)

The next step is to find the radiated fields from the entire current distribution
shown in the radiation model. The total fields are the superposition of the
infinitesimal dipole far fields integrated over the actual source current distribution.
Since the effect of the substrate and ground plane are included in the dipole field
expressions through the use of the substrate factors A(6) and B(6), the substrate
and ground plane may be removed. The radiation model valid for the upper half
plane reduces to a sheet of electric surface current density Js and a loop of
magnetic current K as shown in Fig. 3-5. The radiated far fields for the entire
source distribution are equal to the product of the unity strength infinitesimal
dipole far fields and the Fourier transforms of the source distributions [26].

Erad = Efag (1,8,0) Jex(UV) + Efad (18,6) Jsy(u,) (3.29a)
) . .
Erad = Efag (r,8,6) Ke(u,v) + Erad’ (8,9) Ky(u,v) (3.29b)

The Fourier transforms are defined by Eq. (3.30) where the path C is around the
periphery of the closed surface, and surface A is over the top of the closed surface
as shown in Fig. 3-5.
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\
rd

Figure 3-5. Far field radiation model
Jex(u,v) = L Jex(x,y) %W gy dy
Jey(u,v) = L Jey(x.y) W ax dy
r(x(u,v) = fc Kx(x,y) e o+ W) 2. di

Ry(U,V) :f Ky(X,y) el.(UX-{-VY)’y\ .dl
C

u = Kk, sinB coso

v =k, sind sing

Ko = 00 &g Uo

(3.30a)

(3.30Db)

(3.30¢)

(3.30d)
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The total radiated far field for the microstrip antenna is then the superposition of
the contributions from the electric and magnetic current source fields.

Erad = Erad + Erad (3.31)

The Cavity Model
The basic principle behind the cavity model is to predict the input
impedance of a microstrip antenna by lumping the losses (conductor, dielectric,
radiative, etc.) into a quality factor Q [19,21,23]. Once a quality factor is found, an
effective loss tangent for the cavity may be computed and results from planar
circuit theory applied to predict the input impedance of the lossy cavity. The
quality factor of a circuit is defined as

Stored Energy _ 0)%-
Power Loss PL (3.32)

where the power loss includes the sum of all the losses in the circuit. The losses
for the microstrip antenna are dielectric loss Pqg, conductor loss P, and radiation
loss Pr. The total power loss is then

from which the overall quality factor may then be split up into individual quality
factors according to

1
Q Q Q Q (3.33)
The stored energy in the cavity is given by

us=;_-fv[n.e +B-H]dV:é—fv[e|E|2+u[H|2]dV 00
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where the integral is over the volume of the cavity. The dielectric loss is

Pq= metan&f |E|?dV
v : (3.35)

Assuming that the metalization is much thicker than a skin depth the conductor

loss is computed with
Pe=24] %f |H(d)|? dS
20 Js (3.36)

where the integral is over the surface of the conducting patch. The loss due to
fields radiating away from the antenna is given by

2n
Pr=1—

/2 2 2
f |Erag| “ 1 “ sind do do
NoJO JO

(3.37)

Evaluating these integrals, a quality factor may be found from Eq. (3.32).
To illustrate how the quality factor is used to compute input impedance consider
the cavity being driven at its resonant frequency w,. At resonance, the energy
stored in the electric field is equal to the energy stored in the magnetic field, and
the total energy stored in the cavity may be written as

Us=adf |E|? dS
S . (3.38)

Substituting Eq. (3.35) and Eq. (3.38) into Eq. (3.32), the dielectric quality factor is
given by the following
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sdf|E|2ds
Qd=(])o—=(1)° S =

oed tanﬁf |E|?ds
S

1

(3.39)

Therefore, it is reasonable to approximate the effective loss tangent which
includes all of the losses in the cavity by the inverse of the quality factor [21].

tandess = 1

Q (3.40)

The effective loss tangent is then used to compute electric field within the cavity
with planar circuit theory. Since the input current was assumed to be a 1A (rms)
constant current strip, the average voltage over the feed will be equal to the input
impedance of the cavity. The average voltage over the feed is given by

-d Xot W/2
Zin=Vaye = W Ez(x,yo) dx
Xo - W2 : (3.41)

Microstrip Antenna Examples

To illustrate the use of planar circuit analysis and the cavity model consider
the rectangular microstrip antenna geometry shown in Fig. 3-6. Two devices with
this topology were fabricated on a Rogers RT/Duroid substrate in order to
compare the measured data with that predicted by the cavity model. Flange
mount SMA connectors were used for the feed probe driving the antennas. The
data for the devices and substrate material are listed in Table 3-1. The first
example was designed to be a microstrip antenna with an input impedance of
50Q at a resonant frequency of 1.15 GHz. The second example was designed to
be a half wave resonator of 6.33 cm in length. The resonant frequency would be
roughly 1.55 GHz, and any electromagnetic radiation would be undesired.

The skin depth for an imperfect conductor is given by
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5o |2

Wop (3.42)

where the conductivity of copper is 5.8 x 107 S/m. At the operating frequencies
the skin depths for examples 1 and 2 are 1.95um and 1.68um respectively. In
both cases the copper plating is many skin depths thick, so only the magnetic
current in the radiation model needs to be considered. The equivalent magnetic
currents in Fig. 3-6 are found from Eq. (3.20). In the x direction the currents are

Kx0)=xXxdY Amcoska)=XKcx0) , 0sx<a
m=0 (3.43a)
K(x,b) =-XdY Bpcos(ke)=xKe(xb) , O<x<a
m=0 (3.43b)
y n=y
b
b ¢
<
K(x,b) A
4
n=-x = K(0.y) K(ay) | — n=x
r
y0 » l—w N
\ K(x,0)
> - > X

n=-y

Figure 3-6. Magnetic current density distributions.
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Table 3-1. Microstrip antenna and Rogers RT/Duroid parameters

Parameter Value

a (example 1) 8.53 cm
b (example 1) 12.6 cm
Xo (example 1) 2.04 cm
Yo (example 1) 5.03 cm
a (example 2) 6.33cm
b (example 2) 1.27 cm
Xo (example 2) 0.92 cm
Yo (example 2) 0.62 cm
Feed type coaxial
Feed radius/width 254 um
Thickness 711um

Plating Copper: 35.6 um
Dielectric constant 2.33

Loss tangent ~ 0.001

The magnetic currents in the y direction are equal to

> Amcos(Bmy) , O
~ m=0

K@.y)=-yd

m=0

<y<

Y, BmcosPm(y-b) , Yo<y<b

Yo
= S; Ky(o,Y)

(3.44a)
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Y ()" Ancos(Bmy) . OSY<yo
~ m=0 ~
Kay)=yd =y Ky(a,y)

(-]

Y (1)"BmncosPmlyb) , Yo<y<b
™ . (3.44b)

Since differential vector dl follows path C with a positive right hand sense it will
always be parallel with the magnetic current, and the dot product will be unity.
Thus, the Fourier transform defined in Eq. (3.30c) is

a

o a . .
Ke=dY, | Am f e cos(kyX) dx - B e f e cos(kx) dx| -
m=0 0 0

which may be simplified to

Re=dY Gamlt) |An-Bm o |
m=0 (3.45)

~ a . sy jua .
Cxm(u) = f o™ cos(lex) dx =14 [( 1)2 ° - 1]
0 kx -u

The Fourier transform for the y-component of the magnetic current Eq. (3.30d) is

Yo . b .
o™ cos(Bmy) dy +Bm f 6 cospum(y-b) dy

Ky=-d Amf
m=0

0

> \ Yo . b |
+dY, (-1)"e™ Amf e cos(Bmy) dy + Bmf e'"Y cospm(y-b) dy
m=0 0 Yo
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which also may be simplified.

Ry =Y, Yin An Gym + B G
m=0

(3.46)
Ym=(-1)"e™- 1
- &M [jvcos(Bryo) + BrnSin(Bmyo)] - I
Cym(v) = fo e™ cos(Bmy) dy = >
Bm-Vv
b . jvb VYo, ;
é;m(v) = [ e cosP(y-b) dy = e [WCOSES (y:,l-zb) . BmSlnﬁm(va)]

These equations were evaluated numerically in order to determine the
dimensions and feed location of the antenna to obtain the desired input
impedance and resonant frequency of 50Q2 and 1.15 GHz respectively. The
results of this analysis are shown in Fig. 3-7. Since actual losses are often higher
than those included in the cavity model, the input impedance antenna was
designed to be slightly higher in an attempt to obtain an experimental value of
50Q. The impedance loci for the devices were measured with an HP8753A
network analyzer, and 74.5ps of electrical delay was added to compensate for the
length of the SMA connector feed. The measured input impedance for the
microstrip antenna in example 1 is plotted in Fig. 3-8. The input impedance is
48.1Q at a resonant frequency of 1.1446 GHz which are very close to the design
values. The theoretical and measured impedance loci for the resonator circuit of
example 2 are shown in Figs. 3-9 and 3-10 respectively. Both the cavity model
and experiment result in a resonant frequency of 1.5755 GHz, and a parallel
resistance of about 1.4kQ due to radiation, dielectric and conductor losses. Note
that the agreement between experiment and theory is excellent in both cases.
The measured locations of the higher order modes for example 1 are also in good
agreement with theory.
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Fstart=500MHz Fstop=1.6GHz

1: TMo1 mode

2: TM10 mode 3: ITM11 mode 4: TMog mode
51.8Q 20.2Q 12.8Q 64.0Q
1.145GHz 778MHz 1.385GHz 1.656GHz

Figure 3-7. Predicted microstrip antenna impedance for example 1
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CH1 Sq4 1 UFs L 48.076 o —=701.17 mp 198.32 pF
i2/17/92 MICROSTR 1 144.563 612 MHz

88 ma

2

Conr 0 MHz
Del

845 o

98 mn

0 GH2

27 n

402 0

A6 GHz

START 500.000 000 MHZz STOP 4 600.000 000 MH2

Figure 3-8. Measured microstrip antenna impedance for example 1
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Fstart=0.3MHz Fstop=1.6GHz

1: Parallel mode 2: Series mode
1.463kQ 45mQ
1.575GHz 880MHz

Figure 3-9. Predicted microstrip antenna impedance for example 2
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CH1 Sps 1 U FS 1; 1.4298 ke 049.44 0 4.994 nH
11/28/92 0.5IN RESON 1 §575.524 633 MHz

Cor
Del

START .300 000 MH=z STOP 14 00.000 OO0 MHz

Figure 3-10. Measured microstrip antenna impedance for example 2
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CHAPTER 4. RADIATION FROM PIEZOELECTRIC DEVICES

In this chapter a piezoelectric correction will be added to the microstrip
antenna analysis discussed in Chapter 3 in order to predict the electromagnetic
radiation characteristics of the bulk acoustic wave resonator depicted in Fig. 1-3.
The predicted electromagnetic radiation spectrum is experimentally confirmed by
measuring the radiated power from quartz and lithium niobate resonators. To the
best of this authors knowledge, this is the first time that a bulk acoustic wave
resonator has been analyzed as a microstrip antenna with a piezoelectric
substrate. Therefore, the work presented in this chapter is believed to be unique,
and is the most significant contribution of this thesis.

Single Mode Separation of the Coupled Wave Equation

It is shown in this section that if only one acoustic thickness mode is
excited, the coupled wave equation Eq. (2.11) can be approximately separated
into a z-dependent acoustic term and an x,y-dependent electromagnetic term.
The subscript terminology is employed to specify the coordinates (x1,x2,x3), and is
related to the (x,y,z) specification as shown in Table 2-1. The conductor areas of
the devices considered in Chapter 2 are electrically small, and the electric field
strength is effectively constant over the surface of the conductor. If the conductor
area is not electrically small, then the electric field strength may vary over the
resonator surface. However, under the quasi-static approximation for
piezoelectric devices the acoustic field will only couple to the irrotational part of
the externally applied electric field. The irrotational part of the applied electric
field is the DC mode which has no x1 or x2 dependence. Since the acoustic field
couples only to the irrotational part of the applied electric field, under the
assumption that only one acoustic thickness mode is excited the acoustic fields
within the device will also have no x1 or x2 dependence. Thus, for the x3
dependent acoustic variables the del operator may be approximated by

V=~ X3 9
X3 . (4.1)
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Assuming AC steady state fields, from Faraday's law and Ampere's law
Egs. (2.4) and (2.5), the wave equation for the x3 directed electric field is

VxVXE = -joud + cozuD (4.2)

where J is the x3 directed source current density. From Eq. (4.1), the strain is
related to the displacement by

ou
Ska = Vel = —

oX3 (4.3)

In Chapter 2 a wave equation Eq. (2.37) was derived for the displacement within
the device. Applying Eq. (4.3) to Eq (2.37), the acoustic wave equation may be
written in terms of the x3 dependent strain:

2

9 Sgs-i-kisks:()

Ox3 : (4.4)

The subscript "A" has been added to the acoustic wave number so that it will not
be confused with the electromagnetic wave number. Since the analysis is for a
single acoustic mode, the constitutive relations are
D3 = €33 E3 + e3k3 Ska (4.5)
Tak = Cakka Sk3 - €ask E3 (4.6)
Using the vector identity

VXVXE=V (V-E)- VE

and substituting Eq. (4.5) into Eq. (4.2) the coupled wave equation becomes
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2 _ 2 ~
V (V-E)- V E = -jopd + o p(easEs + €3k3Ska) X3 4.7)

From Gauss's law Eq. (2.6), Eq. (4.5) and Eq. (4.1) the divergence of the electric
field is approximately equal to

V.E=-%yg, . %3 95s

€33 €33 OX3
Applying Eq. (4.1) again

2
e3k3 0 Sk3 ~

V(V-E) =- >
€33 0X3

Substituting this result into Eq. (4.7), canceling the x3 unit vector and expanding
the vector Laplacian in rectangular coordinates one obtains

2
e3k3 0 Sks3

2 2 2
0Es 0Es OE 2 , 2
S 4+ S + A neasEs - jopds = - — ® nesk3Ska

aX$ ax§ ax§ €33 0oX3 . (4.8)

Newton's law Eq. (2.22) for a single thickness mode is given by

03 . (4.9)
Equating Eq. (4.9) to the partial with respect to x3 of Eq. (4.6) one obtains

oT oS oE 2
S C3kk3 k. €33k 8 = -pw Uk
oX3 0X3 X3

Differentiating this result again with respect to x3 and using Eq. (4.3) gives
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2
S 0E 29u 2
Cakk3 :3 - €33k 23 = -pw o -po Sk3
X3 X3 0X3

The second partial of the electric field with respect to x3 may now be solved for:

2 2 2
dEs_po 33+Cskk33 Ska
ox2  ©€ask €33k g2 .

Substituting this result into Eq. (4.8) and rearranging, the wave equation becomes

2 2
dEs JOE 2 .
—23 + —23 + @ peasEs - jopds =
0X1 0X2

[llesak e3k3 + p] Ska

2 2

€33k eSkS} d Sk @
2 e

oxg 3K . (410)

- ——| Cakk3 +
e €a3

For useful piezoelectric materials:

p >> l€33k €3k3

Neglecting this term, the wave equation may be written as

2 2 - 2 2
dEs OJE 2 . c dS
284220 4 0 peasEs - jouls = - 3 L

axf ax§_ €33k ax§ Cakka (4.11)

where the stiffened elastic constant is

C3kk3 = C3kk3 + ©3k3 €33k / €33

From Eq. (2.36) the acoustic wave number for a thickness mode is given by
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2 2 —
Ka = pow / Cakks

The term in the square brackets of Eq. (4.11) is the one dimensional acoustic
wave equation for the strain associated with a thickness mode and from Eq. (4.4)
is equal to zero. Substituting Eq. (4.4) into Eq. (4.11), what is left is the two
dimensional Helmholtz equation Eq. (3.1).

Thus, under the given assumptions the coupled wave equation may be
approximately separated into an acoustic wave equation for the x3-dependent
strain and an electromagnetic wave equation for the x1 and x2 dependence. The
X1,X2-dependent electric field is given by the mode matching solution for the 2D
Helmholtz equation and is the externally applied electric field. The total electric
field for the device is approximately equal to the superposition of a x3-dependent
acoustic term and the x1,x2-dependent electromagnetic term:

E5(X1,X2,X3) = Ea(x1,X2) + {(xa) (4.12)

where E3(x1,x2) is the mode matching solution and {(x3) is defined as the
piezoelectric correction factor [7].

To determine the piezoelectric correction, recall that the electric flux density
of a thickness mode resonator is completely supplied by the externally applied
electric field E3(x1,x2) and is equal to

D3 = £33E3(x1,X2)
Substituting this result and Eq. (4.12) into Eq. (4.5) one obtains

D3 = £33E3(X1,X2) = €33[E3(x1,%2) + {(Xa)] + €3k3Ska

from which the piezoelectric correction factor is given by

e
{(xa) = - —X3 Syq
e (4.13)
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Since it is assumed that only a single thickness mode is excited within the device,
the displacement field is given by the one dimensional solution Eq. (2.45a), and
the strain Skg3 is then equal to

Sis = dug _ _ lesks cos(kaxs - 6)
0X3  joAessCakks cosO

The piezoelectric correction factor is then equal to

e 2 | cos(kaxs - 0
C(xa) =- 22 G5 = & - (kns - 6)
€33 joeasA coso

(4.14)

Radiation From Bulk Acoustic Wave Resonators
From Eq. (4.12) the electric field within the device is equal to the mode
matching result obtained in Chapter 3 with the addition of a piezoelectrically
generated term. The radiated far fields from the piezoelectric term will then have
to be vectorially added to the radiated far fields found in Chapter 3. Following the
procedure outlined in Chapter 3, the substrate factor for the z-dependent
piezoelectric term is

i =

0  |ka(cospd+1) Ptanpd
K5 -p°| dcospd d tan@

where the superscript "p" indicates piezoelectric. The radiation model for the
piezoelectric term is a loop of constant magnetic current placed on the periphery
of the device. The magnitude of this current for a 1A input current is

d 2
Kp =f dz = kd |tan®
A £(2) dz [—

joAesg| 6
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Since the piezoelectric term has no x,y-dependence, the Fourier transforms are
equal to

- a ., . . ] . .
KR(u,v) = KP f - e oM x = - TT (- (1-¢"
0

. b P .
Ro(uv) = KP f e g . g gy - :(T 1-e" (-
0

The radiated far fields for the piezoelectric term are found with Eq. (3.29b),
however the Fourier transforms and substrate factor with the superscript "p" are
used instead of Eq. (3.26), Eq. (3.45) and Eq. (3.46). The entire radiated far fields
for the structure are the vector sum of the far fields from the piezoelectric term and
the far fields computed in Chapter 3.

The reason for computing an effective quality factor in Chapter 3 was to
incorporate the three different electrical loss mechanisms into the impedance
calculation. The quality factor of an electromagnetic resonator as defined by Eq.
(3.32) only has meaning at the electromagnetic resonant frequency of the cavity.
Since the acoustic resonators are not necessarily electromagnetically resonant,
the electrical losses will have to be incorporated into the impedance computation
by some other means. An effective quality factor could be computed at acoustic
resonance, however the only acoustic loss mechanism being considered in this
study is viscous damping which can be incorporated into the impedance
calculation through a complex elastic constant as in Eq. (2.51). The dielectric
losses are included in the field computation by the use of a complex permittivity
constant as shown in Fig. 3-1a. Assuming a 1A drive current, the input
impedance will be equal to the average voltage over the feed:

q [+ w/2
Vave = f V{x.yo) dx
%o w2 (4.15)

where the rf voltage is
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d 2
V(xy) = - f E,(x,y) + {(2) dz = -dE(X,y) - — d !@]
0 jO)A&‘.33 0

Through the use of complex parameters, the acoustic and dielectric losses
have been included in the calculation of the input impedance using Eq. (4.15).
The conductor and radiative losses have not been included in the impedance
calculation, and these losses may be modeled by the inclusion of an additional
parallel resistance. The conductor and radiation losses for the acoustic resonator
are computed with Eq. (3.36) and Eq. (3.37) except the electric field now given by
Eq. (4.12). The conductance of this additional parallel resistance is related to
these losses by
G= Pc + Prad
2
[Vavel™ (4.16)

The input admittance of the device is then approximately equal to

1 1
Yin=Z—'=G+

in Vave

(4.17)

This approach to estimating the input impedance of a resonator has also been
applied to microstrip antennas with good success [22]. The cavity model however
produces somewhat more accurate results because the actual complex poles are
included in the analysis of the lossy cavity [21,23].

In order to estimate the radiated power from the device, one must consider
how the resonator is excited. The actual device is driven by a voltage source with
some finite source impedance as shown in Fig. 4-1. Once the input impedance is
known, the actual drive current and voltage across the device may be computed:

Zin

V = Vs
Zin+ Zo (4.18)




74

1

= Vs
Zin+ 2o, (4.19)

From the calculation of the additional conductance Eq. (4.16), the radiated
electromagnetic power for a 1A drive current is available. An estimate of the
electromagnetic power that is radiated from the device under the excitation shown
in Fig. 4-1 may be obtained by scaling the result for a 1A input current as shown

in Eq. (4.20)

|
Prad=P:£‘1 H 2
[1A|" (4.20)
| —
Z O
+ ———
Vg vV [/ z,

Figure 4-1. Bulk acoustic wave resonator excitation

Electrically Small Bulk Acoustic Wave Resonators

Due to the roughly four orders of magnitude difference between the
electromagnetic and acoustic wavelengths in the substrate material, useful bulk
acoustic wave resonators are almost always electrically small devices. If the
resonators can be assumed to be electrically small, the analysis can be greatly
simplified. For an electrically small microstrip circuit, the conductors are
equipotential surfaces and only the DC mode is excited. The electric field is then
irrotational and is related to the potential function by
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Since the substrate is on the order of half an acoustic wavelength thick, it is
electrically thin and the substrate factors given by Eq. (3.22) are approximately
equal to zero. In the limit as d approaches zero the expressions for the radiated
far fields of an infinitesimal normalized horizontal magnetic current ribbon
embedded in a grounded dielectric Eq. (3.25) and Eq. (3.27) reduce to [26]:
EN™(r,0,0) = 22 o7 sing
2nnof (4.21a)

Ezmx(r,e,(p) =% el oep cosQ

2mNof (4.21b)

Eg " (r0.0) = - 12 g¥" cogg
2mNof (4.21¢)

Ez,my(r,e,(p) = Mo ok 5550 sing
27Mor . (4.21d)

The radiation model for the antenna that is shown in Fig. 3-3 consists of a
magnetic current ribbon around the periphery of the device. The magnetic current
density for an arbitrary electric field is given by Eq. (3.18). From Eq. (3.20), the
magnetic current density may be integrated over the substrate thickness to
condense the current ribbon into a filamentary magnetic current.

d d d
K=f Ms(z)dz=f Exndz=~(zxn)j E;dz=-V(zxn)
0

0 0 (4.22)

The radiation model therefore reduces to a loop of magnetic current placed
around the periphery of the device, and the magnitude of the magnetic current is
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equal to the voltage applied to the resonator. The total radiated far fields are now
expressed as [26]:

. -jkor - N
Eo(r,0,0) = 12H9° " [R () sing - Ky(u.v) coso |
TNol (4.23a)
. “jkor - N
Eo(r.0,9) = 0Ha® coso [Kx(u,v) cosg + Ky(u,v) sin(p]
21Nof . (4.23b)

where the Fourier transforms of the magnetic current are defined in Eq. (3.30).
The radiated fields are functions of the voltage across the resonator which can be
computed with Eq. (4.18) once the input impedance of the device is known. The
radiated electromagnetic power may be estimated for a general electrically small
bulk acoustic wave resonator as long as the input impedance function is
available. Since the conductors are assumed to be equipotential surfaces and
the electric field conservative, this formulation is valid for a general resonator. A
three dimensional resonator is a multiple mode structure, and its electric field will
be some complicated function of x,y and z. However, since the electric field is
conservative, the line integral from one conductor to the other over any arbitrary
path is equal to the voltage applied to the conductors. Thus, if the impedance of
the resonator is available via a finite element computation or measurement, Eq.
(4.22) is still valid as long as the device can be considered electrically small.

Bulk Acoustic Wave Resonator Radiation Examples
Consider an electrically small resonator having the same topology as the
device shown in Fig. 3-6. The Fourier transforms are

a . . . . .
Ke(Uv) = -V f ¢ - ¢® o dx=jyu—(1 ™y (-6

0

~

b y " .
Ky(u,v) = -V f e ! - ¢ dy=-j—v-(1 - (1-"%
0
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and the radiated far fields become

-'ko )
Eq(r,0,0) = Vouge™ (1- 6% (1 - M) lsm(p , 509 ]
2rmef ! Y (4.24a)
Vopge jua jvb sing  cosg
Eo(r.0,0) = - ————(1-€"%) (1 - ") cose e
el . (4.24b)

Thus for the case of a rectangular resonator, the radiated fields may be
written in closed form as a function of the voltage across the device. The radiated
field strength is directly proportional to the voltage applied to the device, and from
the form of Eq. (4.18) one would expect a drop in the radiated power at series
resonance and an increase in the radiated power at parallel resonance. To
illustrate this point consider the resonator parameters listed in Table 4-1.
Assuming that the devices are one dimensional, the input impedances may be
estimated with Eq. (2.47) and the voltage across the devices computed with Eq.
(4.18). Shown in Figs. 4-2, 4-3, 4-4 and 4-5 are the predicted input impedances
for the devices as computed with Eq. (2.47), and the radiated power spectrums
near the resonant modes for a 10V source with a 50Q source impedance. As
expected, for both cases there is a sharp drop in the radiated power at series
resonance. There is also a rise in radiated power at parallel resonance, however,
the increase is large for the lithium niobate device but barely visible for the quartz
resonator. This is because the lithium niobate resonator has a lower impedance
then the quartz device, and the increase in the voltage across the resonator due
to the impedance increase at parallel resonance is much greater.

Both the mode matching method Eq. (4.20) and the electrically small
technique Eq. (4.24) were used to compute the radiated power spectrums for the
resonators being considered. For the quartz device, the power curves generated
by the two different methods lay directly on top of one another as evident in Fig. 4-
3. This implies that the electrically small approximation is very accurate for the
quartz device near the fundamental mode resonance. For the case of the lithium
niobate device, the two power curves can be resolved as shown in Fig. 4-5.
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This is because the device is being operated at a higher frequency (~22.8MHz),
and lithium niobate has a higher dielectric constant (g, =29) than quartz. The
lithium niobate device is electrically larger than the quartz resonator and thus a
more efficient radiator. This is why the mode matching method predicts a slightly
larger amount of radiated power than the electrically small technique. The
electrically small approximation for this example is less accurate. However, the
values computed from the two methods differ by less than 1%, and the electrically
small assumption still provides a good estimate of the total radiated power.

Table 4-1. Bulk acoustic wave resonator parameters

Parameter AT quartz Z lithium niobate
Mode shear longitudenal
Resonance fundamental 1st overtone
a (cm) 5.0 5.0
b (cm) 5.0 5.0
d (um) 292 485
¢ (N/md) 29x10° 245x10°
e (C/m?) -0.095 1.3
e (F/m) 3.63x10™" 25.667x10™"
p (kg/m’) 2650 4640
n (N-s/m?) 8x102 5x10™
tand 0.0028 0.0028
fs (MHz) 5.664 22.779

fp (MHz) 5.684 22.806
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In order to verify the theoretical results, the resonators specified in Table 4-
1 were fabricated on three inch wafers. The wafers were completely metalized on
one side with approximately 0.5um of aluminum. Using the same metalization, a
5cm by 5cm resonator with a 1.0cm by 0.6cm feed line was patterned on the other
side as shown in Fig. 4-6. A block diagram for the test setup to measure the
electromagnetic power being radiated from the devices is shown in Fig. 4-7.

N

]

Figure 4-6. Bulk acoustic wave resonator topology

Test Fixture

HP8753A > > HP3585A
Network Analyzer ;6 )) ) ) >A;A— Spectrum Analyzer

Device Ant.

Figure 4-7. Test setup for measuring the radiated power spectrum
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The resonator and receive antenna are mounted on a test fixture which is
illustrated in Fig. 4-8. The resonator being tested is clamped to a copper clad
printed circuit board. The clamps, with ordinary pencil eraser as a padding
material, gently press the ground plane side of the wafer to the copper cladding
making an electrical contact. The entire surface of the copper clad board is then
the ground plane for the experiment. A 5.2cm by 5.2cm hole was cut in the board
underneath of the resonator in order to provide a traction free surface for the back
side of the device. The excitation is provided via a 10cm piece of 0.085in coaxial
transmission line. An SMA connector is mounted on one end of the line, and the
shield and dielectric have been stripped away from the other end exposing the
center conductor. The outer shield of the line was then soldered to the copper
clad board to provide a ground plane contact, and another clamp was used to
press the center conductor of the line onto the feed pad of the resonator. The
resonator is driven by an HP8753A network analyzer from which the input
impedance is measured. On the edge of the board, an AM loopstick antenna is
mounted about 12cm above the ground plane. The terminals of the antenna are
connected to another SMA connector which serves as the input to an HP3585A
spectrum analyzer. Electromagnetic radiation emanating from the device is
picked up by the AM antenna and detected with the spectrum analyzer. The
spectrum analyzer was set in a peak hold mode so that the detected radiated
power may be displayed as a function of frequency.

The goal of this experiment was to verify the shape of the radiation
spectrum predicted by theory and not to attempt to measure the total power
radiated by the resonator. In other words, the experiment was performed to
determine if the radiated power level really does fall off at series resonance and
increase at parallel resonance. The absolute magnitude of the measured power
spectrums cannot be compared with what is predicted by the theoretical
calculation for the following reasons. First, what is predicted by theory is the total
power radiated by the device where the Poynting vector has been integrated over
the entire upper half space. In the experimental results, just the power picked up
by the AM antenna is plotted. It would be very difficult if not impossible at these
frequencies to experimentally integrate the total radiated power over the upper
half space. Such a measurement would have to be performed in an anechoic
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Figure 4-8. Bulk acoustic wave resonator test fixture
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chamber and would require a complete characterization of the AM antenna.
Second, the frequencies where these devices operate (SMHz~22MHz) are
considerably higher than the frequency range that the AM antenna was designed
for (~1MHz). Some of the incident power to the AM antenna is probably being
reflected and not being detected by the spectrum analyzer. Third, the
measurements were not made in an anechoic chamber, therefore reflections from
various objects in the lab could alter the amount of power detected by the
spectrum analyzer. Also, the distance separating the resonator from the AM
antenna is only about 15cm which is probably not in the far field of either device.
The theoretical calculation computes only the far fields of the antenna. If one
were not in the far field, the 1/r2 power law would not be obeyed and the
measured power would differ from what would be predicted by theory. With all of
the above points in mind one could not hope to experimentally measure the total
amount of power that was radiated from the bulk acoustic wave resonator.

The measured input impedances for the resonators are plotted in Figs. 4-9
and 4-10. The output power of the network analyzer was set to 23dBm in order to
get the detected signal level well above the noise floor of the spectrum analyzer.
The agreement between theory and measurement is fairly good except for the
spurious modes which are not predicted by the one dimensional theory. The loss
and thickness parameters listed in Table 4-1 were optimized to obtain agreement
with the measured data. The experimental radiated power spectrums are plotted
in Figs. 4-11 and 4-12. The shape of the measured power spectrum is in
excellent agreement with the theoretical computation with the exception of the
spurious modes. As predicted, at series resonance there is a rapid decrease in
the radiated power from the resonators, and at parallel resonance there is an
increase in the radiated electromagnetic power. Also consistent with the
theoretical results is the relative magnitude of the radiated power increase at
parallel resonance, which is large for the lithium niobate device and small for the
quartz device. The results of this experiment support the analytical method
described in this chapter for the computation of the radiated electromagnetic
fields from a bulk acoustic wave resonator in the vicinity of acoustic resonance.
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Figure 4-9. Measured input impedance for the AT-quartz resonator
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Figure 4-10. Measured input impedance for the lithium niobate resonator
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CHAPTER 5. INTEGRATED MICROSTRIP ANTENNAS

Thin Metalizations

For the examples in Chapter 3, the copper metalization was many skin
depths thick at the operating frequencies of the devices. Aluminum metalizations
used in integrated circuit technology are typically 0.1um to 2.0um thick. Therefore
for examples 1 and 2, a typical integrated circuit metalization would not even be
one skin depth thick and the amount of energy dissipated in the conductors would
increase. In order to accurately predict the performance of an integrated
microstrip antenna, the effect of metalizations which are not many skin depths
thick needs to be characterized.

First, consider the interface between a dielectric region and an infinitely
thick conducting slab, where the fields in the dielectric region are known. The
dielectric fields are computed assuming the conductor to be perfect, and for a
microstrip antenna would be those found with the mode matching method.
Boundary conditions dictate that the component of the magnetic field tangential to
the interface must be continuous. For an interface located at z=0, the magnetic
field penetrating into the conductor is given by

H = Hian(2=0) €™

where the propagation constant for a good conductor is

. 2 WUC .
v=V jouc- o pe =4/ o> (14))
2 : (5.1)

The tangential magnetic field at z=0 is found from the mode matching solution.
The magnetic field is in the form of a wave traveling into the conductor, and the
connection between the magnetic field and the electric field is the intrinsic
impedance of the medium. For a good conductor, the intrinsic impedance is

n=4/ 2= (14)
20 . (5.2)
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For a conductor of thickness t, the metallic slab may be thought of as a
transmission line of length t, impedance n and propagation constant y [31].

Assuming that free space exists on the other side of the conductor, the line is then
loaded with a real impedance of 377Q. The transmission line model for the
analysis of a thin conductor is illustrated in Fig. 5-1. The magnetic and electric
fields within the conductor are modeled as the current and the voltage on the line
respectively. Assuming that the input current iq is equal to 1A, the power loss per
unit area for the conductor is then equal to

Rs = Re {vi+ vai2*} (5.3)

Expressions for the port voltages and output current are easily obtained from the
ABCD matrix for a segment of lossy transmission line:

2 h2
vy =1 coth(yt) - n oseh (1)
n coth(yt) + 377 (5.4)
= —-mosehiv)
n coth(yt) + 377 (5.5)
_ 3771 csch(yt)
n coth(yt) + 377 (5.6)

Note that in the limit as t grows large, the port parameters approach

Vi—n vo—0 i2—0
The power loss per unit area per unit current for a thick conductor is then

Rs=Re{n}= 22)“(%
(5.7)
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Figure 5-1. Transmission line model for good conductors
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which is equal to the classical expression for the surface resistance of a good
conductor. Thus, an effective surface resistance for the conducting layer is
provided by Eq. (5.3), and the conductor losses are now calculated with

Pc=2nsf |H(d)|? dS
S . (5.8)

Since the thin conductor model is a transmission line model, it is also valid for the
multilayer metalizations that are often used in hybrid and integrated microstrip
circuits. To analyze multiple layers of different metals one would simply cascade
the ABCD transmission line matrices for each layer, and compute the port
voltages and output current for a 1A input current. An effective surface resistance
is then obtained from Eq. (5.3).

Plots of the effective surface resistance versus conductor thickness for
aluminum at frequencies of 1GHz and 2GHz are shown in Fig. 5-2. The losses
are very large for extremely thin conductors and decrease rapidly as the
conductor is made thicker. These additional losses will cause a decrease in the
resonant resistance of the antenna. It appears that for aluminum at these
frequencies, a conductor thickness of about 2um is sufficient, and this metalization
is obtainable with current integrated circuit technology. Shown in Fig. 5-3 are
plots of the output current i appearing at the other side of the conductor. This
represents the current that tunnels through the conductor and would have to be
added to the radiation model in Fig. 3-3. Note that with the exception of very thin
metalizations, the current which appears on the top surface of the antenna is
extremely small in comparison with the current on the bottom surface (i1 =1A). For
typical integrated circuit metalizations, at the frequency range of interest the
current on the top surface of the microstrip antenna would radiate a very small
amount of power in comparison with the other equivalent sources. Thus, the
equivalent surface current on the top side of the antenna is neglected in the
calculation of the power radiated from the antenna.

To experimentally confirm the results of the theoretical calculation
concerning the effect of the metalization, microstrip antennas where fabricated at
the MRC on nominally 254um thick AT-quartz substrates. Since AT-quartz is
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piezoelectric, the dielectric constant eT= 4.6¢, will have to be used in the cavity
model calculation [7]. These antennas have exactly the same topology as the
quartz resonators shown in Fig. 4-6, and the electromagnetic resonant frequency
is about 1.4GHz. Acoustically, the resonator is operating at about the 125th
overtone which would be so weakly excited that there would be no measurable
effect on the input impedance. In other words, the AT-quartz resonators from
Chapter 4 are being characterized as half wavelength long microstrip antennas,
and the acoustic wave generation at the electromagnetic resonant frequency is
neglected. The aluminum metalization thickness ranged from about 0.3um to
2.0um in order to observe of the effect on the resonant resistance of the antennas.
The resonant resistance of the microstrip antennas was measured with an
HP8753A network analyzer with the wafer mounted in the test fixture shown in
Fig. 4-8. The section of coaxial transmission line was compensated for with the
addition of 1.0723ns of electrical delay, and the effect of the feed line was backed
out of the measured input impedance locus with Libra simulations. The
experimental and theoretical results for the resonant resistance are shown in Fig.
5-4. Using Eq. (5.3) for the effective surface resistance, the resonant resistance
computed with the cavity model is plotted as the solid curve for a wafer thickness
of 254um. Since the wafer thicknesses were found to vary between 254um and
305um, the 305um curve is also plotted. The measured resistance at resonance
for a variety of metalizations appear as the solid dots. Note that the agreement
with theory is fairiy good, and all of the measured points fall within the tolerance
range for the wafer thickness. The results of this experiment indicate that it is
reasonable to model the effect of thin metalizations on microstrip antenna
performance with the use of an effective surface resistance given by Eq. (5.3).

Radiation Efficiency
The primary function of an antenna is to radiate electromagnetic energy
into free space. The figure of merit describing a particular antenna's ability to
perform this function is the radiation efficiency. The radiation efficiency of an
antenna is defined as the total radiated real power divided by the total real power
absorbed by the antenna. This may be written as follows:
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Pr

=B +ParPs (5.9)

The efficiency can also be expressed in terms of the individual quality factors:

1/Qy

S=1a g 1/Q;

At the resonant frequency of the antenna, wy, the energies stored in the electric
and magnetic fields are equal, and the dielectric and conductor quality factors are

1/Qq = tand
1/Qc = 2Rs
Hdao |

Substituting these results into the efficiency expression gives

1/Qy
1/Q; + tand +

&= 2R,

Hdawo (5.10)

The resonant frequency for the TMp1 mode is approximately

L%

LWen (5.11)

Wo =

where L is the resonant length of the antenna.

Examining Eq. (5.10), in order to make an efficient microstrip antenna the
following design rules must be followed. First, from Fig. 5-2, the thinner the
metalization the larger Rg becomes which reduces the radiation efficiency of the
antenna. Therefore, the metalization layer needs to made thick, such that the
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effective surface resistance Eq. (5.3) is approximately equal to the thick metal
value Eq. (56.7). Also from the efficiency relation, the antenna becomes more
efficient as the substrate thickness, d, is increased. Note that as the substrate
thickness approaches zero, so does the radiation efficiency of the microstrip
antenna. If the effective surface resistance is reduced, then for a given efficiency,
the substrate thickness can also be reduced. One way to reduce the effective
surface resistance of the metalization by as many as two orders of magnitude over
that of aluminum is to use a superconducting material. The use of
superconducting materials could greatly improve the performance of integrated
microstrip antennas on electrically thin substrates. Also for a set of microstrip
antenna dimensions, the radiation efficiency is reduced for substrates with a high
dielectric constant because the resonant frequency wg is decreased. Radiation
efficiency may also be improved by decreasing the dielectric loss tangent of the
substrate material. Another way to increase the radiation efficiency of a microstrip
antenna which is not obvious from Eq. (5.10), is to increase the width of the
antenna. Making the antenna wider increases the length of the radiating sides
thus increasing the amount of power radiated into free space. This has the effect
of increasing 1/Qy in Eq. (5.10), and therefore increases the efficiency of the
antenna.

Silicon dioxide (SiO2) layers up to about 25um thick may be realized with
integrated circuit processing techniques and should be considered as a substrate
material. As previously mentioned, the radiation efficiency of the antenna may be
improved by reducing the dielectric constant and loss tangent of the substrate. A
substrate with a dielectric constant near unity and a loss tangent close to zero
may be obtained by selectively etching an SiOz layer, leaving the conducting
patch supported by a series of posts. This is the so called "bed of nails" concept
which is illustrated in Fig. 5-5 [1]. To investigate the feasibility of this structure,
radiation efficiency versus resonant frequency calculations were made with the
following parameters. For the pure SiO2 substrate the dielectric constant and loss
tangent were assumed to be 4.0 and 0.001 respectively [26]. To model the "bed
of nails" substrate, a dielectric constant of 1.01 was used along with a loss tangent
of 10-6. For both cases the metalization is assumed to be 2um of aluminum and
the width of the antenna is 1.5 times the resonant length.
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Figure 5-5. "Bed of nails" integrated microstrip antenna substrate concept

The calculations were made for both the pure SiO» and the "bed of nails"
concepts over a frequency range of 1GHz to 50GHz with substrate thicknesses of
10um, 15um, 20um and 25um. The results are shown in Fig. 5-6 and Fig. 5-7.
Note that in both cases an efficiency level greater than 10% is not realized until
the operating frequency of the antenna is extended well above 10GHz. The
radiation efficiencies for microstrip antennas on 25um thick SiO2 and "bed of
nails" substrates were computed to be 0.30% and 0.47% respectively at 2GHz.
Thus, for the 1GHz to 2GHz frequency range of interest, neither the pure SiO2 or
"bed of nails" substrate concepts obtain high enough radiation efficiency levels to
be used in this work.

The inability to deposit a thick enough layer of dielectric material with
standard integrated circuit processing technology is probably the most severe
constraint limiting the ultimate performance of an integrated microstrip antenna.
Closed cell foams could be used to realize substrates with dielectric constants
near unity, and could possibly be deposited in a thick enough layer to overcome
the substrate thickness problem without the use of superconductors. A material
called thermoset microwave foam (TMF) has received some attention for its
application to microstrip antennas [20]. Further investigation is however required
to determine if TMF is a good candidate for an integrated microstrip antenna
substrate material.
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Integrated Microstrip Antenna Design

In this section, the steps required to design an integrated microstrip
antenna are discussed. Design examples are presented for aluminum and
superconducting metalizations on TMF substrates. Also, an analysis example is
presented for an aluminum antenna on a 635um thick gallium arsenide substrate.
For the two design examples, system specifications require the antenna to have a
radiation efficiency of at least 50% and it must fit on a three inch semiconductor
wafer. The antenna is to be edge fed with a 1mm wide transmission line and
have an input return loss greater than 20dB in a 50Q system.

For the first design example, consider a 6.35cm long aluminum microstrip
antenna on a TMF substrate material. The dielectric constant and loss tangent for
TMF are approximately equal to 1.4 and 0.0006 respectively [20]. From Eq.
(5.11), the resonant frequency of the antenna for the TMg1 mode is approximately
2GHz. The first step is to determine the required thickness of the aluminum
metalization. Examining Fig. 5-2, a 2.0um thick layer of aluminum will result in an
effective surface resistance which is about 98% of the thick metal value.
Therefore, a 2um aluminum metalization will be used. The next step is to use the
cavity model at 2GHz and plot the efficiency versus substrate thickness curves for
a number of different antenna widths. The results of this calculation are shown in
Fig. 5-8, and from these curves the width of the antenna and the substrate
thickness may be determined. From the plots, a 508um thick substrate and
5.08cm wide antenna will satisfy the efficiency and size requirements.

Concerning the next design example, it was mentioned earlier in this
chapter that the substrate thickness can be greatly reduced by the use of
superconducting materials. To illustrate this point, plotted in Fig. 5-9 are the
efficiency versus substrate thickness curves for a thick metalization with a surface
impedance of 100uQ. This metalization parameter is typical for the modeling of
high temperature superconducting microstrip circuits [32]. From Fig. 5-9, a 50%
radiation efficiency may now be realized with a 5.08cm wide antenna and only a
88.9um thick TMF substrate. Note that the use of superconductors provides only a
modest efficiency improvement for thick substrates.

It was determined where to feed the antennas to obtain a 50Q impedance
match with consecutive cavity model calculations at the resonant frequencies.
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Figure 5-8. TMF/aluminum microstrip antenna radiation efficiency
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The design and performance parameters for the two design examples are
summarized in Table 5-1. The impedance loci and return loss curves for the
antennas are plotted in Figs. 5-10 and 5-11. The computed resonant frequencies
are slightly different than the values obtained with Eq. (5.11) due to the fringing
fields at edges of the antennas. Both antennas meet the size and return loss
specifications. Note that since the superconducting antenna is a high Q device,
its bandwidth is considerably less than the aluminum antenna.

One way to overcome the problems associated with depositing a thick
enough dielectric layer on top of the semiconductor wafer is to use the
semiconductor wafer itself as the microstrip antenna substrate material. Semi-
insulating 635um thick GaAs wafers are available as a stock item and may be
thick enough to obtain a reason level of radiation efficiency. Therefore, as a

Table 5-1. Design and performance parameters for the antenna examples

Parameter TMF1 TMF2 GaAs
a 6.33 cm 6.33 cm 4.37 cm
b 5.08 cm 5.08 cm 1.04 cm
Xo 2.15cm 2.19 cm 100 um
Yo 0.00 cm 0.00 cm 0.00 cm
Thickness 508 um 88.9 um 635 um
Plating aluminum: 2.0um  superconductor  aluminum: 0.4um
Dielectric constant 1.4 1.4 13.0
Loss tangent 0.0006 0.0006 0.002
Feed probe Microstrip: 1.0mm  Microstrip: 1.0mm Microstrip: 100um
Resonant frequency 1.984GHz 1.999GHz 995.5MHz
Radiation efficiency 50.5% 50.9% 0.75%
Resonant resistance 50.5Q 50.4Q 143.4Q

3:1 VSWR banwidth 20.0MHz 3.5MHz
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third integrated antenna example consider the following analysis problem. A
4.37cm by 1.04cm microstrip antenna with 0.4um thick aluminum metalization on
a 635um thick gallium arsenide substrate where the back side of the wafer is
completely covered with the same metalization. The antenna is edge fed with a
100um wide microstrip line and from Eq. (5.11) has an operating frequency of
about 952MHz. An antenna similar to this example is being considered for use in
a prototype overmoded acoustically driven antenna system. The antenna
parameters are listed in Table 5-1 and the predicted impedance locus of the
antenna is shown Fig. 5-12.

Fstart=000MHz

Figure 5-12. Predicted impedance locus for the GaAs microstrip antenna
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The computed radiation efficiency of the antenna is only 0.75%. The low
efficiency is due in part to the 0.4um aluminum metalization. Shown in Fig. 5-13

are the efficiency versus thickness curves at 1GHz for a GaAs substrate with a
2.0pm thick aluminum metalization. From the figure, by using a 6.35cm wide
microstrip antenna the efficiency could be improved to 12.5%. This is still a
relatively inefficient radiator, and it appears that for the frequency range of interest
(1GHz-2GHz), the dielectric constant of GaAs is too high for use as a

practical microstrip antenna substrate material. At higher frequencies, an efficient
microstrip antenna could possibly be constructed on a 635um thick GaAs

substrate.
1 00 i Ll ¥ T 1 1 T T T T I T T T T T T T r . I . : : : I I I I I

- | =« =-~b=1.27cm ]
¢>_)' 80 H|7TT°T b=2.54cm 1
& i it b=3.81cm _
8 : - = = b=5.08cm :
E 60 [ b=6.35cm ]
: - ]
S - -
5 40 - :
-8 : '
m - -
® 20 ==
o ! - R

0.0 10° 5010* 1.010°

Substrate Thickness (m)

Figure 5-13. GaAs/aluminum microstrip antenna radiation efficiency
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Acoustically Driven Integrated Microstrip Antennas
One of the original goals of this work was to analyze the acoustically driven

microstrip antenna topologies shown in Fig. 1-1 and Fig. 1-2. The input
impedance of the integrated microstrip antenna can be computed with the
technique outlined in this chapter, and the y-parameter matrices for the stacked
crystal filters were found in Chapter 2. The acoustically driven antenna system
can be analyzed as a stacked crystal filter loaded with a microstrip antenna. The
two port representation of the system is shown in Fig. 5-14.

i1 —p 44— i2
Z, O ')
+ Stacked Crystal + Micr!)strip
Vs V1 i Frllter ter V2 Antenna
y-paramete Impedance
- Matrix -
o o |

Figure 5-14. Two port representation of the acoustically driven antenna system

The parameters of interest for the system are the input impedance, radiated
power, and system efficiency. Let the system efficiency be defined as the ratio of
the total real power radiated by the microstrip antenna to the total real power
incident from the source to the input of the stacked crystal filter expressed as:

Py
V=5
inc . (5.12)

The input impedance of the system may be computed from the y-parameters as

1 Y12Y21
Yin= o= yir - 22
" Zn " T hyaZ, (5.13)
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where Z3 is the input impedance of the microstrip antenna. The remaining system
parameters are determined from the port currents and voltages:

I = y21Vs
1 +Yy22Za + Y1120 + ZoZa A (5.14a)
Vo= y21Z\Vs
Y12¥21ZoZa - (1 + Y11Zo)(1 + Y22Za) (5.14b)

_ - Va(l +Yy20Za)
y21Za (5.14c)

Vi
i = i2(y11 + Zo A)
Y21 (5.14d)
A =Yy11y22 - Y12¥21
The real power which is absorbed by the microstrip antenna is equal to
Pant = - Re {v2i2"}
where the minus sign indicates that power is being absorbed by the load. From
the radiation efficiency section of this chapter, the amount of power that will be
radiated into free space by the microstrip antenna is related to the total power
absorbed by the antenna through Eq. (5.9). The radiated power is then

Pr = E&Pant = - ERe {vai2"} (5.15)

where § is the radiation efficiency of the microstrip antenna. The amount of real
power which enters the stacked crystal filter is given by

Pscf = Re {V1i1*} .
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The incident real power from the source to the input of the stacked crystal filter is
related to the reflection coefficient of the system and power entering the filter by

Pscf - Re {V1i1*}

Pinc =
2 2
T- il 1- |Cinl (5.16)

where

Zin-Zy
Zin+zo_

in=

Substituting Eq. (5.15) and Eq. (5.16) into Eq. (5.12), the system efficiency is
equal to

Re {vaip’}
y=-&(1- Tl )Re Viie'} (5.17)

As an acoustically driven integrated antenna example, consider a system
consisting of an aluminum nitride fundamental mode stacked crystal filter driving
the 1.984GHz TMF microstrip antenna that was analyzed in the previous section.
From the stacked crystal filter analysis section in Chapter 2, a fundamental mode
device operating at 1.984GHz would require 2.81um thick aluminum nitride
layers. The conductor dimensions are made to be 218x218um to achieve
maximum bandwidth in a 50Q system [6]. The frequency response of the filter is
shown in Fig. 5-15 where loss has been included in the calculation with the use of
the following complex permittivity and elastic constants:

033_(395 +j3. 3)x10 N/m
833—(95 1025)x10 ' F/m

The input impedance locus and return loss results for the system are shown in
Fig. 5-16. Note that the return loss plot has two nulls, one at the microstrip
antenna resonance and another at a slightly lower frequency. Before resonance,
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Figure 5-15. Frequency response of the fundamental mode stacked crystal filter
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the microstrip antenna has an inductive impedance which resonates with the
capacitive impedance of the stacked crystal filter. The stacked crystal filter feed
circuit therefore has a broadbanding effect on the input impedance of the system.
External components may however be required to tune the input return loss of the
system in order to maximize the bandwidth. The broadbanding effect can also be
seen in the system efficiency and radiated power plots shown in Fig. 5-17 and Fig.
5-18 respectively. A maximum system efficiency of 27.9% was computed at a
frequency of 1.982GHz. If the microstrip antenna had a 90% radiation efficiency,
then about a 49.7% system efficiency could be achieved. The computed radiated
power for a 1V-50Q source is flat within 0.5dBm over a 33MHz bandwidth.

As a second example, consider an overmoded stacked crystal filter driving
the 995.5MHz GaAs integrated microstrip antenna that was analyzed in the
previous section. Recall, for this example the GaAs wafer itself is the microstrip
antenna substrate. In an overmoded acoustically driven system the GaAs wafer is
also the intervening substrate layer between the piezoelectric transducers. The
topology of the system is shown in Fig. 5-19. From the overmoded filter analysis
presented in Chapter 2, a 995.5MHz device with a 635um GaAs wafer as the
intervening non-piezoelectric layer requires Spum thick AIN layers. The conductor
dimensions for maximum bandwidth in a 50Q system are 400um by 400um [6].
The frequency response of the filter is shown in Fig. 5-20 where loss has again
been included by the use of complex coefficients. The complex elastic constant for
the gallium arsenide substrate material is given approximately by [7],

Cs = (119 +0.0952) x 10° N/m®_

Note that gallium arsenide is an acoustically lossy material which greatly
increases the insertion loss of the overmoded filter. The frequency response of
the acoustically driven antenna system is shown in Fig. 5-21. The system
efficiency and radiated power plots for a 1V-50Q source are shown in Figs. 5-22
and 5-23 respectively. A maximum system efficiency of 0.067% was computed at
956.6MHz. At this frequency, the inductive impedance of the microstrip antenna
resonates with the capacitive impedance of the overmoded stacked crystal filter.
The low system efficiency is due to the low radiation efficiency of the GaAs
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microstrip antenna and the high losses in the stacked crystal filter. An integrated
microstrip antenna on a gallium arsenide substrate driven by an overmoded AIN
stacked crystal filter is therefore not practical.
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Figure 5-19. Overmoded acoustically driven GaAs integrated antenna
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Figure 5-20. Frequency response of the overmoded stacked crystal filter
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