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CHAPTER 1. INTRODUCTION 

Statement of Problem 
As electronics systems become more complex, there will be an increasing 

need to develop receiver systems that can be completely integrated onto a single 

semiconductor wafer in order to reduce size and weight, and to enhance 
reliability. For a receiver system to be considered integrated, both the antenna 
and the electronic circuitry must be fabricated on the same semiconductor wafer. 

However, to avoid electromagnetic interference (EMI) problems the electronics 

would have to be somehow shielded from the antenna. The question then 
becomes how does one transfer energy between the antenna and circuitry in an 

integrated system and realize the required electromagnetic shielding. A possible 

solution is to acoustically couple energy from an antenna on one side of a 

semiconductor wafer through a conducting ground plane to the electronics on the 
other side [1]. This could be accomplished with the use of piezoelectrically active 
thin films that are compatible with integrated circuit processing such as aluminum 

nitride or zinc oxide. Using this technology, fully integrated receiver systems 

could be developed where the circuitry is electromagnetically shielded by the 

ground plane from the environment where the antenna resides. Possible 

integrated receiver topologies are shown in Fig. 1-1 and Fig. 1-2. The structure 

shown in Fig. 1-1 is overmoded because of the intervening non-piezoelectric 

semiconductor layer between the two piezoelectric layers. This arrangement 
requires a ground plane on both sides of the wafer, and a seal ring at the edge of 
the wafer to electrically connect the ground planes. A pit has been etched in the 

structure shown in Fig. 1-2 to remove the intervening semiconductor layer, and 

the device is therefore fundamental mode. Note that for the arrangement shown 

in Fig. 1-2 only one ground plane is required. 

The theory of operation is as follows: the received signal excites a potential 

difference between the microstrip antenna and the ground plane which generates 

an acoustic wave in the piezoelectric material. The sound wave propagates 
through the ground plane and semiconductor into the second piezoelectric layer 

on the electronics side. Via the piezoelectric effect, a potential difference will be 
formed between the conductor which is connected to the circuitry and the ground 
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DIELECTRIC LAYER 

PIEZOELECTRIC 
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Figure 1-1. Overmoded integrated receiver system concept 
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Figure 1-2. Fundamental mode integrated receiver system concept. 
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plane on the electronics side of the wafer. Thus, energy is transferred from the 

antenna to the electronics acoustically. However, the signal will only be strongly 
transmitted through the wafer at frequencies where the acoustic path length is an 
integer multiple of a half acoustic wavelength long. So the arrangements shown 
in Fig. 1-1 and Fig. 1-2 not only transmit the signal through the wafer but also 
realize the narrow bandpass filter which is required after the antenna for many 

types of receiver systems [2]. This type of filter structure is called a stacked crystal 

filter (SCF) and is manufactured at the Microelectronics Research Center (MRC) 

at microwave frequencies [3,4,5,6]. 

On the radiating side of the structure resides a microstrip antenna and a 
bulk acoustic wave (BAW) piezoelectric transducer. To study the feasibility of 
such a system, the performance of microstrip antennas with thin substrates and 
metalizations needs to be investigated. Like the microstrip antenna, the 

piezoelectric transducer is a resonant device and its electromagnetic radiation 

characteristics must also be determined. The topology of the piezoelectric 

transducer is similar to that of a microstrip antenna. Thus, the structure to be used 

to study electromagnetic radiation from bulk acoustic wave devices is essentially 

a microstrip antenna with a piezoelectric substrate as shown in Fig. 1-3. 

• 

Condu 

Piezoelectric (c,e,e) d 

Conductor (o) 

Figure 1-3. Bulk acoustic wave device. 
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The purpose of this work is therefore two fold, first, to investigate 
electromagnetic radiation from the structure shown in Fig. 1-3, and second, to 
study the feasibility and optimum configuration of the integrated antenna 

topologies shown in Fig. 1-1 and Fig. 1-2. 

Review of Past Work 
Piezoelectric devices have been analyzed by a variety of methods. For 

devices which may be considered one dimensional, the displacement fields are 
restricted to three modes; one longitudinal and two shear. Seven-port network 
models have been developed to describe this situation. One of the ports is 
electrical and the remaining six mechanical; an input and output port for each 

mode [3,4,5]. This model consists of transmission lines, ideal transformers and 

capacitors, and is equivalent to solving the coupled boundary value problem. If 

only one mode exists, the seven-port network model reduces to the well known 

Mason model for a piezoelectric layer [7,8]. Higher dimensional devices have 

been analyzed with finite difference methods [9,10,11,12], Green's functions [13], 
variational techniques [13,14], and finite element methods [15,16,17,18]. These 
methods, however, assume no electromagnetic radiation, require substantial 
computer power, and are just now starting to become practical for the analysis of 

useful devices. See Appendix A for a reprint of a paper presented at the 1992 
IEEE Ultrasonics Symposium which describes a two dimensional finite difference 

method for the analysis of piezoelectric devices [12]. 

Microstrip antennas have been modeled by many methods with varying 

degrees of success. Probably the simplest model is the transmission line model 
where the microstrip antenna is assumed to behave like a section of transmission 
line [19,20,21]. The radiation losses are modeled by impedances that load the 
line, fringing is accounted for by slightly lengthening the line, and mutual coupling 

between the ends is represented by feedback networks. The model can predict 

the input impedance of the antenna for modes that are effectively one 

dimensional (TMoi or TM02 .etc.). However, the model does not predict the 

radiated fields for the antenna nor can it handle two dimensional modes or 

circular polarization. Therefore, the transmission line model is not sufficient for 
the purposes of this study. 
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An exact representation may be obtained from the mixed potential integral 

equation for stratified media where the Green's functions involve Sommerfeld 
type integrals that must be evaluated on the real axis [19,20]. To actually obtain 

numerical results the integral equation must be approximated numerically by 

moment methods. This method, though very accurate, is difficult to implement 
and provides more information than is required to solve the problem at hand. 

A good compromise between accuracy and ease of implementation is 
provided by the cavity model [19,21,22,23]. The cavity model is two dimensional, 

capable of handling circular polarization and predicting the radiated fields of the 

antenna. In the cavity model it is assumed that the antenna can be replaced by a 

cavity of the same size with perfect magnetic walls on the sides and perfect 

electric walls along the top and the bottom. The fields inside of the cavity may be 

solved for by planar circuit techniques and the surface equivalence principle is 
applied to compute the radiated fields [24,25,26]. The cavity model will be used 
in this work to analyze the radiation and impedance characteristics of the 
antennas to be investigated. 

Some prior work of note has been done on radiation from piezoelectric 

crystals. Mindlin and Lee computed the radiated power from rotated quartz plates 

at thickness mode frequencies [27,28,29]. In the calculation, a quartz plate of 

infinite lateral extent is subjected to a lateral AC electric field or harmonic stress. 

The electric fields in the plate are then computed assuming no radiation, and 
traveling wave electric fields are assumed to exist in the free space above and 
below the plate. The amplitudes of the traveling wave fields are found by 
matching boundary conditions at the free space-piezoelectric interface. The 

purpose of the study was to compute the power lost to electromagnetic radiation 

from the face of a bare piezoelectric crystal in order to find the rotated crystal cut 

with the least radiation. The results would be useful for predicting the radiated 

power loss from surface acoustic wave (SAW) devices. The calculations involve 

no conductors and cannot be used to predict the radiation characteristics of bulk 
acoustic wave (BAW) devices. The work being proposed here therefore differs 
from the prior work of Mindlin and Lee in that a bulk acoustic wave device is being 

analyzed as a microstrip antenna with a piezoelectric substrate. 
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CHAPTER 2. PIEZOELECTRIC DEVICE THEORY 

Coupled Wave Theory 
The analysis of a microstrip antenna with a piezoelectric substrate 

requires the calculation of both electromagnetic and acoustic fields under the 

conducting patch. Since in a piezoelectric material these quantities are coupled, 
strictly speaking the coupled wave equations would have to be rigorously solved. 
This would require a numerical method and large amounts of computer power. 

Fortunately, due to the large differences between the velocity of sound and the 
velocity of light in the medium, greatly simplifying approximations may be made 

without seriously affecting the accuracy of the results. In this section the formal 
coupled wave theory of piezoelectricity is presented, and simplifying 
assumptions are stated and justified. 

The fundamental laws of acoustics in matrix form are [8] 

Newton's law : VT = p — 
(2.1) 

Definition of strain : Vg v = — 
(2.2) 

where the acoustic field variables are defined as 

Stress (N/m^) : T = [Ti Tg Tg T4 T5 Tg]"^ 

Displacement (m) : u = [ Ui U2 U3 

Strain (m/m) : S = Vs u = [ Si S2 S3 S4 S5 Se 

Velocity (m/S) :  v  =  — =  [ v i  y 2  v s ] ^  



www.manaraa.com

7 

The superscript T indicates transpose and tlie mass density is p (kg/m^). Tiie 

matrix divergence and gradient operators in rectangular coordinates are 

0 

a 

(V- )  =Vs  =  

9xi 

0 

0 

0 

_d_ 

3X3 

a 

9X2 

0 

a 

0 

_a_ 
ax3 

a 
3x0 3x2 

3 
0 

3x2 3xi 

3xi 

0 

(2.3) 

The governing equations of electromagnetism are Maxwell's equations 
which for source-free lossless media are as follows: 

Faraday's law : V x E = -
at 

Ampere's law : V x H = — 
at 

Gauss's law : V-D = 0 

Gauss's law : V-B = 0 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

where the electromagnetic field variables are 
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Electric field (V/m) : E = [Ei E2 Esf 

Electric flux density (C/m^) : D = [ Di Dg D3 

Magnetic field (A/m) : H = [ Hi H2 H3 

Magnetic flux density (Wb/m^) : B = [ Bi 63 63]^ 

The curl matrix operator in rectangular coordinates is 

0 -
9 

9X3 

9 

9X2 

V X = 
a 

9X3 
0 

9 

9xi 

9 

9xi 
0 

(2.8) 

In a piezoelectric medium the acoustic and electromagnetic laws are 
coupled through the constitutive relations 

T = c^: S - e^: E 

D  = e :E  + e :  S  

B = |i H 

(2.9) 

(2.10) 

where the colons indicate a matrix multiplication. The tensors which characterize 

the material in contracted notation are 

Piezoelectric stress matrix (C/m ) : e = 
©11 ©12 ©13 ©14 ©15 ©16 

©21 ©22 ©23 ©24 ©25 ©26 

©31 ©32 ©33 ©34 ©35 ©36 
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Stiffness matrix (N/m^) : c^ = 

C11 C12 Ci3 Ci4 C15 C16 

C21 C22 C23 C24 C25 C26 

C31 C32 C33 C34 C35 C36 

C41 C42 C43 C44 C45 C46 

C51 C52 C53 C54 C55 C56 

C61 C62 C63 C64 C65 C66 

Permittivity matrix (F/m) : e = 
e i i  e i2  e i3  

£21 £22 £23 

631 £32 £33 

Since the material is assumed to be non-magnetic; n = 47c x 10'^ H/m. The 

superscripts E and S mean under constant electric field and constant strain 
respectively. 

From these relations the following wave equations may be derived: 

s a^E 
VxVxE = |j.e : —- + |i e : Vg 

at^ 

3v 

at 

V  c^: V s V  =  p  — +  V  e^: — 
at^ at 

(2.11) 

(2.12) 

It is convenient to apply Helmholtz's theorem and separate the electric field into 
rotational and irrotational parts [8] 

E = - V(|) 

where the rotational part satisfies the Coulomb gauge. 

V-E' = 0 

(2.13) 

Substituting Eq. (2.13) into the wave equations (2.11) and (2.12); 
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2 r 2 

V X V X E"^ = |j, e^: - n e^: V ̂  + |i e : Vs 
at' at' 

av 

at (2.14) 

V c ^ :  V s V  =  p ^ + V - e  V e " ^ :  
at^ at at (2.15) 

The wave equations (2.14) and (2.15) precisely describe wave phenomena in 
piezoelectric material. 

The first simplification one normally uses in piezoelectric device analysis 
is called the quasi-static approximation. To illustrate this, assume that constant 

amplitude fields are traveling in the xi-direction in a 6mm hexagonal crystal such 
that the fields are proportional to 

g j(cùt - kxi) 

and the partial derivative operators become 

ax-) at ax3 axg 

Materials such as aluminum nitride and zinc oxide crystallize in this lattice, and 
the material tensors are of the form 

C11 Ci2 Cl3 0 0 0 

Ci2 Oil Cl3 0 0 0 

Ci3 Ci3 C33 0 0 0 

0 0 0 C44 0 0 
0 0 0 0 C44 0 
0 0 0 0 0 C66 

0 0 0 0 ©15 0 

0 0 0 ei5 0 0 

631 031 ©33 0 0 0 
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s 
e = 

eii 0 0 

0 eii 0 

0 0 £33 

Carrying out tlie indicated operations tlie wave equations in matrix form are 

2 
co^ieii 0 0 eii ({) e i5V3 

2  2  
0 COJAEii-k 0 

_r .2 
E = - JCO jj. k 0 + cok|i 0 

2 2 
0 0 CO |i £33 - k 0 ©31 Vi 

2 2 
CO p - Oiik 

0 

0 

0 
2 2 

CO p - CeeK 

0 

0 

0 
2 , 2 

CO p - C44K 

©31 E3 0 

S
 

II >
 0 

• 1 2 
+ jcok 0 

©15 El ei5(t> 

From the Coulomb gauge 

El  =0  

and from the first wave equation 

jco Ell (2.16) 

The remaining components of the wave equations yield the following dispersion 
relations: 

(co |i eii - k̂ ) E2 = 0 

2 2 
(co p - ceek ) V2 = 0 
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(co^ p - C44k^) V3 = jco k^ei5 (|) -> Eq. (2.16) (co^p - [C44 + eis / en] k^) V3 = 0 

2 2 r 
(o) p - Ciik ) vi = (031 cok) E3 

2 2 r 
((i)k|i 631) vi = (cû |i £33 - k ) E3 

The first two dispersion relations are for a purely electromagnetic wave 
and purely acoustic wave respectively. Piezoelectricity does not have an effect 
on these waves. The third equation is a purely acoustic wave, however the 
elastic constant has been replaced by a "piezoelectricaliy stiffened" elastic 

constant inside of the square brackets. The hybrid waves described by the 
remaining dispersion equations are called quasi-acoustic and quasi-

electromagnetic waves. The piezoelectric coupling causes the wave numbers of 
these waves to be perturbed. Eliminating one of the variables gives 

{(ùp - Cl 1 k^) (toV £33 - k^) = |i e3i (Ù k^ (2.17 

This equation has two roots for k^ which are the wave numbers of the quasi-
acoustic and quasi-electromagnetic waves. For example, the relevant material 

constants for aluminum nitride are [30]; 

C11 =345x10® N/m^ 

631 = -0.58 C/m^ 

£33 = 9.5 X 10 F/m 
p = 3270 kg/m® 

The wave numbers for the hybrid waves are found to be 

kQA = 3.74186740820 x 10^^ (rad/m)^ 

kQE = 4.7129540548 x 10^ (rad/m)^ 
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The wave numbers for pure acoustic and electromagnetic waves are 

kA = 3.74186740772 x 10^^ (rad/m)^ 

k| = 4.7129540554 x 10® (rad/m)^ 

Note that difference between the hybrid wave numbers and pure wave 

numbers is very small which means that piezoelectricity has a negligible effect on 
EM and acoustic wave propagation. This is an important result because 
electromagnetic wave propagation can then be handled with electromagnetic 
theory and acoustic wave propagation with acoustic theory provided that the 
piezoelectrically stiffened constants are used where required. In other words, the 

rotational part of the electric field may be assumed to be zero when computing 
acoustic fields. This is the quasi-static approximation for piezoelectric device 
analysis [7,8]. The acoustic waves and potential field ^ are piezoelectrically 

coupled through Eq. (2.16). 

Under the quasi-static approximation discussed in the coupled wave 
theory section, the acoustic problem may be solved separately from the 
electromagnetic problem. For actual device analysis, engineering notation is 

usually easier to work with than the matrix form of the fundamental laws. The AC 

steady-state, quasi-static equations of linear piezoelectricity in engineering 

notation are: 

One Dimensional Piezoelectric Device Analysis 

Newton's law : 
aTij 2 

= -pco Uj 
9xi (2.18) 

Gauss's law : 
(2.19) 

and the constitutive relations 



www.manaraa.com

14 

(2.20) 

(2.21) 

The repeated subscripts imply summation (i,j,k,l = 1,2,3), and the connection 

between engineering notation and matrix notation is summarized in Table 2-1. 

Table 2-1. Relationship between engineering and matrix notation 

Using 2D and 3D finite element methods, Lerch determined that for a 

piezoelectric resonator if a dimension was at least 10 times larger than any other 
dimension, it would not significantly change the resonant frequency of the device 

and could be neglected [16]. Thus, If the xi and X2 dimensions are much greater 

then the X3 dimension, the device may be assumed to be one dimensional. In 
other words, no variation of the fields is permitted in the xi and X2 directions and 

all derivatives in those directions will be zero. Under these assumptions the 
piezoelectric device equations reduce to the following: 

Engineering Matrix 

11 

22 

33 

23,32 

13,31 

12,21 

1 

2 

3 

4 
5 

6 

(2.22) 
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dxa (2.23) 

_ dUk d(|) 
T3i = 03,̂  ̂+ 6331— 

_ dUk d(t) 
03 = 03.3^-0335^ (2,25) 

Substituting Eq. (2.25) into Eq. (2.23) and integrating twice, the potential is 

(t) = ̂ Uk + rx3 + A 
^33 (2.26) 

where r and A are arbitrary constants of integration. From Eq. (2.24) and Eq. 

(2.26) the stress may be written as 

— d u k 
Tsj = C3jk3 -1— + ©33] r 

' ' dX3 (2.27) 

where the stiffened elastic constant is 

C3ik3 = C3ik3+!a^ 
£33 

Substituting Eq. (2.27) into Eq. (2.22) and expanding j,k=1,2,3 results in the 
following set of coupled wave equations: 

— d Ui — d Ug — d U3 2 
C3II3 ^+C3123 ^+00133 — + pm Ui = 0 

dx3 dX3 dx3 (2.28a) 
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— d Ui — d U2 — d U3 2 
C3213 —^ + C3223 —^ + C3233 —Y + po U2 = 0 

dX3 dX3 dX3 (2.28b) 

(2.28c) 

Expanding Eq. (2.26) for k=1,2,3, the potential is equal to 

4) = 0313 
Ui + 

©323 U2 + 6333 U3 + r X3 + A 
(2.29) 

Substituting Eq. (2.29) into (2.25) the electric flux density is a constant given by 

The arbitrary constants T and A will be nonzero only in the presence of an 
externally applied potential. If there is no externally applied potential then r and 

A will be equal to zero, and the relationship between the potential and acoustic 

fields Eq. (2.29) will then be of the same form as Eq. (2.16). In other words there 

will be a nonzero electric field traveling along with the acoustic wave, but the 
electric flux density will vanish because r=0. To be more specific, the dot product 

of the acoustically generated electric field and electric flux density is zero. 
However, a nonzero electric flux density vector may exist orthogonal to the 

acoustically generated electric field. This means that the electric energy density 

is zero, and that energy may not be transferred between the acoustic and electric 
field unless an external electric flux density field is applied parallel to the 
acoustically generated electric field [7]. 

As can be seen from Eq. (2.28), the one dimensional wave equations 
predict the existence of three propagating modes: one longitudinal and two 

shear. Eq. (2.28) is the set of differential equations that must be solved In one 
dimensional piezoelectric device analysis. In the following sections comprising 

this chapter, the one dimensional equations will be solved for device geometries 

D3 = - £33 r (2.30) 
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of interest. These solutions are required to facilitate the analysis of the structures 
discussed in the introduction of this thesis. 

A fundamental mode resonator consists of a one dimensional slab of 
piezoelectric material and perfectly conducting electrodes of area A. The 
conductors, assumed to be massless and of zero thickness, are applied to each 
face of the device as shown in Fig. 2-1. The acoustic wave is assumed to travel 

in the X3 direction, and the device is a thickness mode resonator. An X3-directed 
external field is applied via the conductors. Since the acoustic wave travels in 

the same direction as the externally applied field and the acoustically generated 
electric flux density field must be zero; the electric flux density in the device must 
be totally supplied by the applied field. 

Fundamental Mode Resonator Analysis 

Massless Conductor 

X3 

/ / / % / / / / / / / / / '  / 7 - r /  / T / '  /  / /  / /  / /  / I  ^  i  d  Î 

Piezoelectric 

. .  0  

Massless Conductor 

V 

Figure 2-1. Fundamental mode bulk acoustic wave resonator 
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The current flowing into the device is related to the electric flux density by 

where the minus sign appears because differential vector dS is directed normally 
out of the top surface. Solving for r one obtains 

Thus, in a thickness mode resonator, the independent variable is the input 
current and the dependent variable is the potential difference across the device 
[7]. Eq. (2.32) is a boundary condition equation for the resonator problem. The 
remaining boundary conditions required to uniquely describe the device are 

ascertained from the assumption that the resonator Is surrounded by air. Air 
provides a negligibly small restoring force, and traction-free boundary conditions 

may be applied to the top and bottom surfaces of the device. Mathematically, to 
satisfy the traction-free boundary conditions 

must be enforced at the top and bottom surfaces of the resonator. 

In a one dimensional bulk acoustic wave resonator, one Is normally 

interested in the characteristics of only one of the three possible propagating 
modes. Assuming that the modes are non-degenerate and weakly coupled, the 

coupled set of wave equations given in Eq. (2.28) may be approximately 
decoupled as 

J dS = -jcùI D3 dS = jcoEssAr 
(2.31) 

r= 
jcoessA (2.32) 

T3j = 0 (2.33) 

(2.34a) 
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C44 + PCO^ U2 = 0 
dx| (2.34b) 

- d^U3 2 
C33 —— + po) Us = 0 

dxi (2.34c) 

where the matrix notation has again been employed. The stress equations 
reduce to 

T31 = C55 + e35 r 
dx3 (2.35a) 

1- ~ du2 _ ' 32 = C44 —— + e34 r 
°X3 (2.35b) 

— dU3 133 = C33 -—+633 r 
°X3 . (2.35c) 

For example, assume that the only mode excited is the longitudinal 
thickness mode. For this mode, the governing differential equation is Eq. (2.34c) 

and the stress field is given by Eq. (2.35c). To simplify the notation drop the 
subscripts and define the following: 

U = U3 

X = X3 
e = e33 

£ = £33 
C= C33 

from which the acoustic wave number is given by 

2 2  
k = pco / c (2.36) 
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The governing differential equation is then 

^  + k^u = 0 
dx (2.37) 

and the potential function is 

(t) =  (e/e)u + rx + A (2.38) 

Since the bottom plate is grounded, 

(1>(0) = 0 (2.39) 

The general wave solutions to Eq. (2.37) are 

u(x) = A cos kx + B sin kx (2.40) 

(|)(x) = (e/e) A cos kx + (e/e) B sin kx + r x + A (2 41 ) 

T(x) = -ck A sin kx + ck B cos kx + eT (2.42) 

where A, B and A are arbitrary constants and are found from the boundary 

conditions. For an input current I, r is given by Eq. (2.32), and by applying the 

boundary condition equations at x=0 and x=d one obtains the following system of 
equations for the arbitrary constants: 

(j)(0) = (e/e) A + A = 0 

T(0) = ckB + er = 0 

T(d) = - ck A sin kd + ck B cos kd + e r = 0 
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The solution to this system is 

A = el tan 0 

jcoeAck (2.43a) 

B = - el 

jcoeAck (2.43b) 

A = - K tan 0 

(2.43c) 

The electromechanical coupling coefficient is defined as 

EC (2.44) 

and the half phase across the device is 

0 = kd 

Solutions for the variables of state are then 

u(x) = - el 

jcoeAck 

sin (kx - 0) 

cos 0 (2.45a) 

0(^) — 
jcoeA 

K sin (kx - 0) + sin 0 

cos 0 (2.45b) 

E(x) = - V(j) = 
jcoeA 

1 - K 
2 cos (kx - 0) 

cos 0 (2.45c) 
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The potential difference across the resonator is found from Eq. (2.45b). 

V = (t)(d) = Id 

jcûeA 
1 -K 

2 tan 0 

0 (2.46) 

The impedance of the resonator is then 

jcoCc 
1 -K 

2 tan 0 

0 (2.47) 

where Co is the parallel plate capacitance of the device. 

^ _eA 
Co — —— 

Series resonance is defined as the frequencies where Eq. (2.47) is equal to zero 
and may be found by solving the transcendental equation 

0 = K tan 0 (2.48) 

Parallel resonance is where Eq. (2.47) becomes infinite which occurs when 

0 = 
nTt 

n = 1,3,5,... 
(2.49) 

Note that the impedance of the resonator is capacitive until series 
resonance and then is inductive for the region between series and parallel 

resonance. This inductive region is where the device is most useful generating 

large amounts of inductance for high-Q applications. Shown in Fig. 2-2 is the 

measured impedance locus for a fundamental mode aluminum nitride resonator 
that was fabricated at the MRC. The device consists of 400|im x 400|im 

aluminum 
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S22 Z 
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Figure 2-2. Measured fundamental mode AIN resonator impedance 
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conductors and a c-axis directed aluminum nitride film of a nominal thickness of 
5|j,m. The series and parallel resonances were measured to be 1.0190 GHz and 

1.0485 GHz respectively. Upon inspection of Fig. 2-2, some features of the 
measured data differ from what would be predicted by Eq. (2.47). First, if the 
material were lossless the impedance would be purely imaginary and the 
impedance locus would follow the edge of the Smith chart. In reality there are 
losses which may be represented by allowing the permittivity and elastic 

constants to become complex [13]. 

e = e (1 - jtanS) (2.50) 

c = c + j(ori (2.51) 

The dielectric loss tangent is tanS and t] is the viscosity of the medium. Also 

evident in Fig. 2-2 are the small resonances which give the curve a rough 
appearance. These spurious resonances appear due to the finite width 
dimensions of the device, and will not be predicted by a one dimensional theory. 
The two and three dimensional numerical techniques discussed in Chapter 1 
and Appendix A do however predict the phenomena. 

With the exception of the spurious resonances, this device may still be 
modeled with the one dimensional theory presented in this section. The 

aluminum nitride material constants required to characterize the longitudinal, X3-

dependent thickness mode are [30]: 

C33 = 395x10° N/m^ 

633 = 1.55 C/m^ 

£33 = 9.5 X 10 F/m 

p = 3270 Kg/m^ 

To improve the agreement with the experimentally observed resistance of 4660 

at parallel resonance, the elastic and permittivity constants were given the 
following imaginary parts. 
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C33 = (395 +j1.0)x10® N/m^ 

e33 = (9.5-j0.25)x10"" F/m 

From Eq. (2.49) with n=1 and the measured parallel resonance at 1.0485 GHz, 
the effective thickness of the device is about 5.41 iim. From the location of the 

series resonance at 1.0190 GHz and Eq. (2.48), the electromechanical coupling 
constant is found to be about K2=0.068. This compares well with the value of 
K2=0.060 computed from Eq. (2.44). The devices fabricated at the MRC are 

characterized with Cascade Microtech coplanar waveguide wafer probes, and 
the electrical connection to the ground plane is via capacitive coupling. The 
fringing capacitance between the center conductor which connects to the top 
plate of the resonator and the surrounding ground plane may be accounted for 
by increasing the resonator area. It was found that agreement between 

measurement and theory could be improved by increasing the resonator size 
from 400nm to 424nm and adding 4.3Q of series resistance. The need to add 

series resistance is probably associated with the metalization of the fabricated 
device. The computed impedance of the resonator using the corrected 
parameters is shown in Fig. 2-3 superimposed on the measured data. Note that 

the agreement between experiment and theory is good, however the spurious 
responses are not predicted. 

Fundamental Mode Stacked Crystal Filter Analysis 
A fundamental mode stacked crystal filter consists of two piezoelectric 

plates that are bonded together back to back as shown in Fig. 2-4. Being a two-

port device, the two-port network parameters can be calculated to determine the 

transfer function. The y-parameters are probably the easiest to compute because 

they impose homogeneous Dirichlet boundary conditions for the potential on the 

region 2 plate, and this boundary condition may be used directly when solving 

the piezoelectric device equations. The basic operating principle of the device is 
as follows. One of the plates is driven by a voltage source which generates an 

acoustic wave in region 1. This wave propagates through the center conductor 
generating a nonzero potential in region 2. 
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Figure 2-3. Predicted and measured AIN resonator impedance 
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REGION 1 

x = 0 --

REGION 2 

Figure 2-4. Fundamental mode stacked crystal filter 

Consider the same assumptions that were used for the resonator analysis, 
and assume that material in regions 1 and 2 have the same crystallographic 

orientation. If one of the plates is twisted with respect to the other, the 

displacements in the xi and X2 directions will no longer be zero and the coupled 
wave equations Eq. (2.28) will need to be solved. The governing differential 

equation is given by Eq. (2.37), and the potential is given by Eq. (2.38). The 

boundary conditions at the air-piezoelectric interfaces are the following: 

(t)i(di) = 1 

01 (0) = (1)2(0) = (t)2(-d2) = 0 

Ti(di) = T2(-d2) = 0 

where the subscripts refer to region 1 and region 2 in Fig. 2-4. The continuity 
conditions at the region 1 - region 2 interface are 

Ti(0) = T2(0) 
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Ui(0) = U2(0) 

Region 1 solutions are given by 

Ui(x) = Ai cos kx + Bi sin kx (2.52a) 

(|)1 (x) = (e/e) Ai cos kx + (e/e) Bi sin kx + n x + Ai (2.52b) 

Ti (x) = - ck Ai sin kx + ck Bi cos kx +e (2.52c) 

and region 2 solutions are 

U2(x) = A2 cos kx + 02 sin kx (2.53a) 

(|)2(x) = (e/e) A2 cos kx + (e/e) 82 sin kx + r2 x + A2 (2.53b) 

T2(x) = - ck A2 sin kx + ck 82 cos kx +e T2 (2.53c) 

Applying tlie boundary conditions at the boundaries of region 1 gives 

^1 (0) = (s/e) Ai + Ai = 0 

(t)i(di) = (e/e) Ai cos kdi + (e/e) 81 sin kdi + Ti di + Ai = 1 

Ti(di) = - ck Ai sin kdi + ck Bi cos kdi +e Ti = 0 . 

Applying the boundary conditions at the boundaries of region 2 gives 

<1)2(0) = (e/e) A2 + A2 = 0 

(|)2(-d2) = (e/e) A2 cos kd2 - (e/e) 82 sin kd2 - r2 d2 + A2 = 0 

T2(-d2) = ck A2 sin kd2 + ck 82 cos kd2 +e r2 = 0 . 
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The continuity conditions at the interface between region 1 and region 2 are as 
follows: 

ck Bi + e Ti = ck 02 + e Fg 

Ai = A2 

Defining 

01 = kdi 

02 = kdg 

the system may be written as a matrix equation as shown in Fig. 2-5. The 
solution of this matrix equation gives the unknown constants for the fields in Eqs. 

(2.52) and (2.53). It is important to note that these field solutions are valid only for 
the short circuit condition shown in Fig. 2-4. These fields would be different for 

some other excitation. To compute the y-parameters the currents ii and 12 need 
to be evaluated. From the resonator analysis section these currents are 

'1 =  1 J i -dS = -  jû) j  D idS = jcùEFiA 
(2.54a) 

h = j J2 dS = - D2dS = jcoer2A 
(2.54b) 

Since the voltage applied to port 1 is unity, for the case of equal thickness plates 

the y-parameters are symmetric and equal to the port currents. 

y i i=y22 = i i  (2.55a)  

ysi = yi2 = i2 (2.55b) 
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cos 01 0 sin 01 0 edi / e 0 e/e 0 Ai e/e 

0 cos 02 0 - sin 02 0 - ed2 / e 0 e/e A2 0 

- sin 01 0 cos 01 0 e/ck 0 0 0 Bi 0 

0 sin 02 0 cos 02 0 e/ck 0 0 B2 0 

0 0 1 -1 e/ck -e/ck 0 0 Fi 0 

1 -1 0 0 0 0 0 0 r2 0 

e/e 0 0 0 0 0 1 0 Ai 0 

0 e/e 0 0 0 0 0 1 A2 0 

Figure 2-5. Fundamental mode stacked crystal filter matrix equation 
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If the plates are not of equal thickness, the excitation voltage will need to be 
applied to port 2 with port 1 short circuited and the calculation repeated. For a 
given source and load impedance Zq the S-parameters may now be computed 

with the following: 

o _ (1 • yii Zo)(i + y22 Zo) + yi2 yzi Zo 
©11 

Sl2 = 

(1 + yii Zo)(1 + y22 Zo) - yi2 y2i Zo (2.56a) 

- 2 yi2 Zq 

(1 + yii Zo)(i + y22 Zo) - yi2y2i zf (2.56b) 

S2, liMA 
(1 + yn Zo)(i + y22 Zo) - yi2 y2i z| (2.56c) 

_ (1 + yii Zo)(1 - y22 Zq) + yi2 y2i Zq 

(1 + yii Zo)(1 + y22 Zo) - yi2 y2i Zo (2.56d) 

Plots of the S-parameters for a fundamental mode aluminum nitride 

stacked crystal filter that was fabricated at the MRC are shown in Fig. 2-6 and Fig. 
2-7. The electrode plates are 400|im x 400|im in size and the aluminum nitride 

layers are nominally 5|im thick. Note the multiple passbands in the insertion loss 

plot. The first passband occurs where the entire structure is one half of an 

acoustic wavelength thick while the next two passbands occur when the device is 
one wavelength, and one and one half wavelengths thick respectively. 

Superimposed on the measured data are the S-parameters predicted by the 

theoretical one dimensional analysis presented in this section. Loss has been 

included in the analysis by using the following complex stiffness and dielectric 
constants: 

C33 = (395 +j3.3)x10® N/m^ 

e33 = (9.5- j0 .25)x10" ' '^  F/m 
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Figure 2-6. Measured fundamental mode AIN stacked crystal filter 
insertion loss response 
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To obtain agreement between experiment and theory for the insertion loss 
of the filter, the imaginary part of the complex elastic constant had to be 
increased substantially over the values used in the resonator analysis sections. 
Since the dielectric loss tangent is unchanged, the additional observed loss is 
being lumped into the complex elastic constant. Processing differences in the 
AIN film deposition or poor quality metalization would necessitate an increase in 

the imaginary part of the elastic constant. The optimized aluminum nitride film 
thickness was found to be 4.88|im. The agreement with theory is excellent 

except for the spurious passbands which are due to the finite width dimensions of 

the device. 

Overmoded Stacked Crystal Filter Analysis 
An overmoded stacked crystal filter is similar to a fundamental mode 

device except an intervening layer of non-piezoelectric material is between the 

piezoelectric layers as shown in Fig. 2-8. Under the same assumptions as those 
used in the fundamental mode filter analysis, the fields in the piezoelectric 
regions 1 and 2 are given by Eqs. (2.52) and (2.53). Due to the shielding of the 
ground planes, the fields in the non-piezoelectric region 3 are just acoustic. 
These are given by 

U3(x) = As cos kx + Ba sin kx (2.57a) 

T3(x) = - Cs k As sin kx + Cg k 63 cos kx (2.57b) 

where Cs is the elastic constant for the longitudinal thickness mode of the non-

piezoelectric medium. The wave number in the non-piezoelectric medium is 
related to its elastic constant and density ps by 

The boundary conditions for the problem are 
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4)i(di) = 1 

01(0) = (|)2(-h) = (l)2(-h - da) = 0 

Ti(di) = T2(-h - da) = 0 

Ti(0) = T3(0) 

T2(-h) = T3(-h) 

Ui(0) = U3(0) 

U2(-h) = U3(-h) 

e"" I nv Piezoelectric (region 1) 

/ / / / / / / / / / / / / / / / / / / / / / / / / / / /  

Non-piezoelectric (region 3) 

Piezoelectric (region 2) 

'2 

X 

-- x = di 

_ _ x  =  0  

_ _ x  =  - h  

--x = - (h+d2) 

Figure 2-8. Overmoded stacked crystal filter 
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Applying these boundary conditions one obtains the following system of 
simultaneous equations: 

(|)1 (0) = (e/e) Ai + Ai = 0 

<1)1 (di) = (e/e) Ai cos kdi + (e/e) Bi sin kdi + Ti di + Ai = 1 

Ti(di) = - ck Ai sin kdi + ck Bi cos kdi +e Ti = 0 

(|)2(-h) = (e/e) Ag cos kh - (e/e) B2 sin kh - r2 h + A2 = 0 

(t)2(-h - d2) = (e/e) A2 cos k(h + d2) - (e/e) 82 sin k(h + d2) - r2 (h + d2) + A2 = 0 

T2(-h - d2) = ck A2 sin k(h + dg) + ck 82 cos k(h + d2) +e r2 = 0 

Ai = A3 

ck 81 + e Ti = k Cs 83 

A2 cos kh - 82 sin kh = A3 cos kh - Bssin kh 

ck A2 sin kh + ck 82 cos kh + e r2 = kCg A3 sin kh + kCg 83 cos kh 

To simplify the expressions define the following: 

02 = kh 

63 = k(h + d2) 

6 = kh 
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These expressions may be arranged into a matrix equation for the 
unknown constants as shown in Fig. 2-9. The port currents, y-parameters, and S-
parameters for the device are computed with the same equations as for the 

fundamental mode stacked crystal filter. The response for an overmoded stacked 
crystal filter is shown in Fig. 2-10 and Fig. 2-11. This device consists of the same 
piezoelectric layers and conductor topology as the fundamental mode filter from 
the previous section, however a 315|im thick intervening layer of silicon has 

been included. Note that the response of this device is overmoded resembling 

that of a comb filter, and the passbands are narrowband. An overmoded stacked 
crystal filter where the intervening non-piezoelectric layer is between the 
piezoelectric layers has not yet been fabricated at the MRC, and experimental 

data is not available for comparison with theory. This type of filter is, however, 
what feeds the microstrip antenna in Fig. 1-1, and fabrication efforts are 
underway. 
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cos 01 0 0 sin 01 0 0 edi / e 0 e/e 0 "AI"  e/e 

0 cos 02 0 0 - sin 02 0 0 - eh / e 0 e/e A2 0 

- sin 01 0 0 cos 01 0 0 e/ck 0 0 0 A3 0 

0 sin 03 0 0 cos 03 0 0 e/ck 0 0 Bi 0 

0 0 0 1 0 - a e/ck 0 0 0 B2 0 

1 0 -1 0 0 0 0 0 0 0 B3 0 

1 0 0 0 0 0 0 0 e/e 0 Ti 0 

0 cos 03 0 0 - sin 03 0 0 -e(h+d2)/e 0 e/e r2 0 

0 sin 02 -asin 0 0 cos 02 -acos 0 0 e/ck 0 0 Ai 0 

0 cos 02 - cos 0 0 - sin 02 sin 0 0 0 0 0 A2 _ 0 _ 

Figure 2-9. Overmoded stacked crystal filter matrix equation 
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Fstart=1 .OGHz Fstop=1.2GHz 

Figure 2-10. Predicted overmoded AIN/Si stacked crystal filter impedance 
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Figure 2-11. Predicted overmoded AIN/Si stacked crystal filter insertion loss 
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CHAPTER 3. MICROSTRIP ANTENNA THEORY 

Planar Circuit Analysis 
A typical microstrip antenna consists of a radiating element fed by a z-

directed current, a dielectric slab and a conducting ground plane as illustrated in 
Fig. 3-1. The conductors are characterized by a finite conductivity a, and the 
dielectric by its permittivity e. The ground plane and dielectric layer are assumed 

to extend to infinity in the x and y directions, and the radiating element has 
dimensions, a x b. The dielectric layer is of thickness d « X, and for the moment 

the radiating element is assumed to have negligible thickness yet be thicker than 

a skin depth. Since the thickness of the dielectric layer separating the antenna 

from the ground plane is much smaller than a wavelength, the electric field can be 

assumed to be z-directed and have no z-dependence [24,25]. Under these 

assumptions, the electric field will obey the Helmholtz equation. 

+ (o^eEz = jm^Jz(x,y) 
ax ay O. i )  

The magnetic field under the patch is found from Faraday's law Eq. (2.4). 

-1 -1 H  =  — V x z E z  =  —  
jtoii JCÙH 

^8Ez ^9Ez 
X—--  y—-

dy dx (3.2) 

The magnetic field will excite surface currents on the bottom surface of the patch 

Js — X J SX 4" y Jgy — n X H(d) — • 
JCÛH 

^9Ez ^8Ez X—- + y—-
dx dy (3.3) 

where the normal vector is directed in the negative z-direction as shown in Fig. 3-
1a. Since the patch edge is an open circuit one may assume that the surface 

currents do not flow off the edge of the patch, and the component of the current 
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(a) Side view of a microstrip antenna 

yo 

> X 

(b) Top view of a microstrip antenna 

Figure 3-1. Coaxialiy fed microstrip antenna 
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normal to the edge of the patch must then be zero. This is effectively a no fringing 

fields approximation where at the patch edges 

n-Js = 0 ,  (3.4)  

The normal vector in Eq. (3.4) is now outwardly directed from the patch edge as 
shown in Fig. 3-1 b. Substituting Eq. (3.3) into Eq. (3.4), the boundary condition in 

terms of the electric field at the patch edge is 

. (3.5) 

This boundary condition states that the tangential magnetic field at the patch 
edges must be zero which is the same condition obtained if the patch edges were 

perfect magnetic conductors; hence the term magnetic wall boundary condition. 

In reality the fields do fringe at the patch edges, and this may be accounted for by 

the use of effective dimensions and dielectric constant. For a circuit of width W 

and length L, the dielectric constant is replaced by an effective dielectric constant 

and the length dimension is extended. 

L —> L + 2AL 

£r —> £eff 

Defining the parameter 

a = W/d 

the effective dielectric constant may be estimated with [20] 

Eeff = ^^^ + ̂ ^(1 + 10/a)^ 
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Z=1 +-L|n 
49 

+ {a/52)^ 

a + 0.432 
:j^ln[l +(0/18.1)'] 

A — 0.564 Er - 0.9 

er + 3 

0.053 

An approximate length extension equation is given by [20] 

AL = d MA 
%4 

where 

= 0.434907 EeffV 0.26 

eT-0.189 

^o.8544_^ 0.236 

^0.8544_^ 0.87 

0.371 

% 2 = 1  +  
a 

2.358er + 1 

%3=1 + 
0.5274 tan -1 0.084 a 

1.9413/42 

0.9236 
£eff 

^4= 1 + 0.0377 tan -1 0.067 a 
1.456 

'][6- 5e 0.036(1 - e,) 

^5=1 -0.218 e '^ '^ .  

The fringing fields at the edge of the patch have the effect of changing the 

resonant frequency of the microstrip antenna, and through the use of the effective 

parameters the resonant frequency of the structure may be accurately predicted. 
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The solution of Eq. (3.1) under the boundary conditions given by Eq. (3.5) 

is planar circuit analysis [24,25]. The most general solution of this equation is 

Ez(x,y) = I G(x,y I Xo.yo) Jz(Xo,yo) dXodyo 
(3.6) 

The Green's function for a rectangular patch under the perfect magnetic wall 
boundary condition is given by 

G(xy IXoyo)  =  ̂ ® X L cos(kyy) cos(kxXo) cos(kyyo) 

sb n=0 kx + ky - k^ (3 7) 

,  m K  ,  n j i  , 2 2  
kx — — ky —— k — CO |i£ 

a D 

aj = 2- Ôjo 

and ôio is the Kronecker delta function. Green's functions exist for other canonical 

shapes such as triangles, circles, etc. Structures for which Green's functions do 
not exist may be analyzed with the segmentation-desegmentation method or the 

contour integral method [24,25]. Solutions obtained with Eq. (3.6) require the 

evaluation of a double summation resulting in long computation times. 

It can be shown that a small coaxial feed or a transmission line feed may 

be approximated by a z-directed constant current strip of width w as shown in Fig. 

3-1 b. The current strip for the microstrip transmission line feed is of the physical 

width and location of the line. For a coaxial feed of radius r an equivalent strip 
feed of width 

w = 4.482 r (3.8) 

is centered on the location of the coaxial feed as shown in Fig. 3-1 b. Whether the 

current strip is oriented in the x or y direction was not found to change the result 
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obtained for the input impedance of the antenna. Since a current strip is one 

dimensional, the solution to the Helmholtz equation may be obtained with the 
mode matching method and written in terms of a single summation, which is more 
rapidly convergent then the double summation in the Green's function solution. 
The result obtained with the mode matching method is mathematically equivalent 

to the Green's function solution, and may be considered as summing in closed 

form the inner summation [22]. 
Solutions for the electric field under the patch which satisfy the Helmholtz 

equation and the magnetic wall boundary conditions may be expressed as 

The presence of the feed at y=yo requires the separation of the solutions in Eq. 

(3.9), and Am and Bm are arbitrary constants to be found by matching the 

boundary conditions at the feed. The boundary conditions at the feed position are 

the continuity of the tangential electric field and a jump condition of the tangential 

magnetic field. 

Ez(x,y) = X Am cos(kxx) cos(pmy) . 0 < y < yo 
m=0 (3.9a) 

Ez(x,y) = % Bm cos(kxx) cospm(y-b) , yo ^ y ̂  b 
(3.9b) 

Pm=Vk".k^ 

Ez(x,yo) = Ez(x,y'o) (3.10) 

(3.11) 

The jump condition for the magnetic field leads to 

y x x  Hx(x,yo) - Hx(x,y"o)] = z Jz(x) => Hx(x,yo) - Hx(x,yô) = - Jz(x) _ (3.12) 
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The source current density may be expanded as a Fourier series of resonant 

modes. 

Jz(x) = X im cos(kxx) 
m=o (3.13) 

jm = ̂  f Jz(x) COS(l<xX) dx 
® •'0 (3.14) 

For the 1A (rms) constant current strip feed model the Fourier constants are 

jm = ̂  f cos(kxX) dx = ^ cos(kxXo) sinc(kxw / 2) 
aw Jxo-w/2 a  (3.15)  

To preserve the continuity of the electric field, match the resonant modes at y=yo 

2 Am COS(kxX) COS(pmyo) = % Bm COS(kxX) COSpm(yo-b) 
m=0 rmO 

which leads to 

o COS (Pmyo) Dm - "m 
COSpm(yo-b) . 

The x-component of the magnetic field is found from Eq. (3.2). 

Hx(x,y) = —X AmPmCos(kxX)sin(Pmy) . 0<y<yo 
jtO|I m=0 

Hx(x,y) = — X BmPm cos(kxx) sin Pm(y-b) , yo ^ y ^ b 
jCù|X tr^o 
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To satisfy tine jump condition for the magnetic field, match the resonant modes. 

— Z [^m Pm COS(kxX) sin Pm(yo-b) - Am Pm cos(kxx) sin (Pmyo)] = - Z jm COS(kxX) 
j(D|l nr̂ o m=0 

Solving for the mode amplitudes one obtains 

Am = jm 
jC0|I COSpm(yo-b) 

Pm sin(pmb) (3.16) 

Bm - jm 
jtopi COS(Pmyo) 

Pm sin(Pmb) (3.17) 

Eqs. (3.9), (3.16) and (3.17) constitute approximate solutions for the electric field 

of a rectangular patch over a conducting ground plane, and these results are 

used in order to predict the characteristics of the microstrip antenna. 

Far Field Radiation 
In order to estimate the far field radiation pattern and radiated power for the 

antenna, the radiated far fields must be found. One way to approximate the far 

fields is to apply the equivalence principle to the structure as shown in Fig. 3-2. 

The idea behind the equivalence principle is to surround the source by a closed 

surface S and to place equivalent sources on the closed surface. 

Figure 3-2. Application of the equivalence principle 
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The equivalent sources produce the same fields outside of the closed 

surface as did the original source, but produce null fields inside the surface. The 
equivalent sources are found by the following [26]: 

Ms =  E x n  (3.18) 

J s  =  n x H  ( 3 . 1 9 )  

where the fields are approximated by planar circuit analysis. Due to the magnetic 

wall boundary condition, the tangential magnetic field and thus electric surface 

current will be zero on the sides. Similarly, assuming the ground plane and patch 

to be perfect electric conductors the tangential electric field and thus the magnetic 

surface current density is zero on the top and bottom surfaces. If the top 

conductor is much thicker than a skin depth, then the electric current density will 
reside mostly on the bottom of the patch and the current on the top of the patch 
will be approximately zero. If the conducting patch is not much thicker than a skin 
depth, then the amount of tangential magnetic field that tunnels through the 
conductor will have to be computed, and some electric surface current will exist 

on the top surface. The magnetic surface current density on the sides is given by 

Eq. (3.18), and is the main source of the radiated fields. Thus, the radiation model 

for the microstrip antenna is shown in Fig. 3-3 where the circle with a dot indicates 

a vector directed out of the page. 

Ms p_ Mf 

TV 

Figure 3-3. Radiation model for the microstrip antenna 
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The model consists of a sheet of electric current density on top of a 
grounded infinite dielectric slab and a ribbon of magnetic current density 

embedded in the dielectric slab. The total magnetic current K that exists at the 

periphery of the surface is found by integrating the magnetic current density over 

the thickness of the substrate. 

Ms dz = Msd 
(3.20) 

The approach to finding the far field radiation from the model in Fig. 3-3 is 

to first find the radiated far fields from infinitesimal horizontal Hertzian dipoles of 

electric and magnetic current. To illustrate this point, consider Fig. 3-4. Shown in 

Fig. 3-4a is an x-directed infinitesimal electric current dipole of unit strength 
residing on a grounded dielectric. Expressions for the Hertzian dipole far fields 
are available in the literature, and are found by using reciprocity and applying the 

transmission line model for plane waves impinging on a dielectric at oblique 

incidence [19,26]. The radiated far fields for the electric current dipole are 

E0®*(r,0,{p) = - A(e) cos8 coscp 
(3.21a) 

Ej,®''(r.0,(p) = B(e)^e"j^' sincp 
(3.21b) 

where the factors A(8) and B(6) account for the presence of the grounded 

dielectric. These factors are given by 

A(0)= 

B(0) = 

tan pd - jfir (ko / P)cos0 (3.22a) 

2 tan pd 

tan pd - ](P / ko)sec0 (3.22b) 



www.manaraa.com

50 

Iv = 1A 

Z \ ^ ghex 

Er 

(a) Infinitesimal electric current dipole 

z 

T' 

AE 
hmx 

Er 
T 

-Z 

^ •! 

X 

Msx Az 

(b) Differential magnetic current element 

Er Msx = T V/m 

(c) Normalized infinitesimal magnetic current ribbon 

Figure 3-4. Calculation of the infinitesimal dipole far fields 
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where 

P = koV Er - sin^e 

Similarly, the expressions for a y-directed electric current dipole of unit strength 

are given by 

The calculation of the dipole fields for the magnetic current ribbon 

embedded in a grounded dielectric substrate is slightly more complicated. 

Shown in Fig. 3-4b is an x-directed differential magnetic current element of 
strength Msx Az. The differential radiated far fields for the current element 

embedded in a grounded dielectric substrate at position -z are [19] 

ES°'(r,e,<p) = - A(e) JCO^o g-jkor e"'^ cose sincp 
(3.23a) 

E!|,'̂ (r,e,(p) = - B(0) ̂  cosç 
(3.23b) 

AeT = [2 - AO)] e*^ sincp MSX AZ 
47tTior cos pd (3.24a) 

AEq, 
hmx 

= [2 - 6(8)] COS0 cos(p 
4mior cos pd (3.24b) 

where the free space impedance is equal to 

The radiation model for the microstrip antenna, however, requires the 
calculation of the radiated far fields from a ribbon of magnetic current density 
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flowing on the sides of the closed surface S. A ribbon of magnetic current density 

may be constructed from differential current elements as shown in Fig. 3-4c. Let 

the magnetic current density be normalized such that the total magnetic current is 

of unity strength. From Eq. (3.20) the magnetic current density is then equal to 

Msx dz— Msxd — 1 => Msx — ^ 

The radiated far fields from the Infinitesimal magnetic current ribbon are found by 

integrating the differential fields over the substrate thickness. In the far field the 
source to observer distance r, and polar angles 0 and cp are approximately 

constant over the substrate thickness, and may be left out of the integration. 
Performing the Integration, the radiated far fields from the normalized x-directed 
magnetic current ribbon are 

_hmx, 
•=0 (r,0,(p) = r AeJ"™ = Id [2 - A(0)] sincp 

J-d 4mior (3.25a) 

5,™(r,0,(p) = f AeJ™ = Id [2 - B(0)] COS0 coscp 

J-d 47m or 4ï"lor (3.25b) 

where in limit as Az approaches dz the integration factor is equal to 

i,= f M,,î5iEîiÉldz=lf ESîEîid) = 
J-d COS pd d J d COS pd pd (3.26) 

Similarly, the radiated far fields for the normalized y-directed ribbon of magnetic 
current are equal to 

Ee"'^(r,0,(p) = - Id [2 - A(0)] coscp 

4mior (3.27a) 
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= Id [2 - B(e)] cose sincp 
4mior . (3.27b) 

The total dipole far fields are just the summation of the vector components. 

X Electric dipole: (r.e.cp) = (p eJ,®* {r,0,(p) + 0 Eg®^ (r,0,{p) (3.28a) 

y Electric dipole: (r,0,(p) = (p E^®^ (r,0,(p) + 0 Eq®^ (r,0,(p) (3.28b) 

X Magnetic dipole: ErS (r,0,(p) = cp E^™ (r,0,(p) + 0 eJ'™ (r,0,(p) (3 28c) 

y Magnetic dipole: eS (r,0,(p) = (p eJ'"^ (r,0,(p) + 0 Eg"^^ (r,0,(p) (3 28d) 

The next step is to find the radiated fields from the entire current distribution 

shown in the radiation model. The total fields are the superposition of the 
infinitesimal dipole far fields integrated over the actual source current distribution. 

Since the effect of the substrate and ground plane are included in the dipole field 
expressions through the use of the substrate factors A(0) and B(0), the substrate 

and ground plane may be removed. The radiation model valid for the upper half 

plane reduces to a sheet of electric surface current density Js and a loop of 
magnetic current K as shown in Fig. 3-5. The radiated far fields for the entire 
source distribution are equal to the product of the unity strength infinitesimal 
dipole far fields and the Fourier transforms of the source distributions [26]. 

Erad = Erad (r,0,(p) Jsx(U,v) + EraJ (r,0,{p) Jsy(U,V) (3.29a) 

ESd = Eik™ (r,e,(p) Kx(u,v) + eS (r,e,(p) Ky(u,v) (3.29b) 

The Fourier transforms are defined by Eq. (3.30) where the path C is around the 
periphery of the closed surface, and surface A is over the top of the closed surface 

as shown in Fig. 3-5. 
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z 

X 

Figure 3-5. Far field radiation model 

Jsx(u,v) = Jsx(x,y) e dx dy 

Jsy(u,v) = j Jsy{x,y) dx dy 

Kx(u.v) = f Kx(x,y)e^(" + 'y);.dl 
Jc 

Ky{u,v)= j Ky(x,y)e'^"*'^^^y dl 

u = ko sin0 cos(p 

V = ko sin0 sinç 
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The total radiated far field for the microstrip antenna is then the superposition of 

the contributions from the electric and magnetic current source fields. 

Efad - Erad + Erad (3.31 ) 

The Cavity Model 
The basic principle behind the cavity model is to predict the input 

impedance of a microstrip antenna by lumping the losses (conductor, dielectric, 

radiative, etc.) into a quality factor Q [19,21,23]. Once a quality factor is found, an 

effective loss tangent for the cavity may be computed and results from planar 

circuit theory applied to predict the input impedance of the lossy cavity. The 
quality factor of a circuit is defined as 

Q= ^Stored Energy 
Power Loss Pl (3.32 

where the power loss includes the sum of all the losses in the circuit. The losses 

for the microstrip antenna are dielectric loss Pd, conductor loss Pc, and radiation 

loss Pr. The total power loss is then 

PL  =  P D  +  Pc +  Pr 

from which the overall quality factor may then be split up into individual quality 

factors according to 

1 _ 1 1 1 

Q Qd Qc Qr . (3.33) 

The stored energy in the cavity is given by 

u.4/Jd E + B H dV 4/J e|E|" + n|H|" dV 
(3.34) 
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where the integral is over the volume of the cavity. The dielectric loss is 

Assuming that the metalization is much thicker than a skin depth the conductor 

loss is computed with 

where the integral is over the surface of the conducting patch. The loss due to 

fields radiating away from the antenna is given by 

Evaluating these integrals, a quality factor may be found from Eq. (3.32). 

To illustrate how the quality factor is used to compute input impedance consider 
the cavity being driven at its resonant frequency coq- At resonance, the energy 

stored in the electric field is equal to the energy stored in the magnetic field, and 

the total energy stored in the cavity may be written as 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

Substituting Eq. (3.35) and Eq. (3.38) into Eq. (3.32), the dielectric quality factor is 

given by the following 
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ed f |E|^dS 
Js 1 

©oEd tan5 I |E|^ dS 
s (3.39) 

Therefore, it is reasonable to approximate the effective loss tangent which 

includes all of the losses in the cavity by the inverse of the quality factor [21]. 

tanSeff = — 
Q (3.40 

The effective loss tangent is then used to compute electric field within the cavity 

with planar circuit theory. Since the input current was assumed to be a 1A (rms) 

constant current strip, the average voltage over the feed will be equal to the input 

impedance of the cavity. The average voltage over the feed is given by 

To illustrate the use of planar circuit analysis and the cavity model consider 

the rectangular microstrip antenna geometry shown in Fig. 3-6. Two devices with 

this topology were fabricated on a Rogers RT/Duroid substrate in order to 

compare the measured data with that predicted by the cavity model. Flange 
mount SMA connectors were used for the feed probe driving the antennas. The 
data for the devices and substrate material are listed in Table 3-1. The first 
example was designed to be a microstrip antenna with an input impedance of 
50Q at a resonant frequency of 1.15 GHz. The second example was designed to 

be a half wave resonator of 6.33 cm in length. The resonant frequency would be 

roughly 1.55 GHz, and any electromagnetic radiation would be undesired. 

The skin depth for an imperfect conductor is given by 

(3.41) 

Microstrip Antenna Examples 
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às = J~^ 
V (ûc\i (3.42) 

where the conductivity of copper is 5.8 x 10^ S/m. At the operating frequencies 
the skin depths for examples 1 and 2 are 1.95p.m and 1.68|im respectively. In 

both cases the copper plating is many skin depths thick, so only the magnetic 

current in the radiation model needs to be considered. The equivalent magnetic 

currents in Fig. 3-6 are found from Eq. (3.20). In the x direction the currents are 

K(x,0) = X d X Am cos(kxx) = x Kx(x,0) , 0 < x < a 
m=o (3.43a) 

K(x,b) = -xd2 Bmcos(kxx) = XKx(x,b) , 0<x<a 
m=o . (3.43b) 

n = y 

n = - X n = x 

» X 

n = -y 

Figure 3-6. Magnetic current density distributions. 
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Table 3-1. Microstrip antenna and Rogers RT/Durold parameters 

Parameter Value 

a (example 1) 8.53 cm 
b (example 1) 12.6 cm 

Xo (example 1) 2.04 cm 

yo (example 1) 5.03 cm 

a (example 2) 6.33 cm 

b (example 2) 1.27 cm 

Xo (example 2) 0.92 cm 

yo (example 2) 0.62 cm 

Feed type coaxial 

Feed radius/width 254 |im 

Thickness 711|im 

Plating Copper: 35.6 [im 
Dielectric constant 2.33 

Loss tangent ~ 0.001 

The magnetic currents in the y direction are equal to 

K(0.y) = -yd 

X Amcos(pmy) , 0<y<yo 
rrteO 

= y Ky(0,y) 

X BmCosPm(y-b) , yo^y<b 
m=0 

(3.44a) 
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K(a,y) = y d 

Z (-irAmCos(pmy) > 0<y<yo 
m=0 

2 (-1 r Bm COSpm(y-b) , yo^y^b 
m=0 

= y Ky(a,y) 

. (3.44b) 

Since differential vector dl follows path C with a positive right hand sense it will 
always be parallel with the magnetic current, and the dot product will be unity. 
Thus, the Fourier transform defined in Eq. (3.30c) is 

Kx = dX 
m=0 

a . , /a 
jux n «Jvb I _|ux Am I e cos(kxX) dx - Bm e j e cos(kxx) dx 

which may be simplified to 

Kx - d ̂  Cxm(u) 
m=0 

Am " Bm e 
jvb 

(3.45) 

^/c 
Cxm(u) = I e'"*cos(kxX)dx = 

kx-u" 

The Fourier transform for the y-component of the magnetic current Eq. (3.30d) is 

Ky = -dX 
m=0 

Am f e cos(pmy) dy + Bm f e cospm(y-b) dy 
Jo Jyo 

m jua 
+ dX (-ire 

m=0 
Am f e'^ cos(pmy) dy + Bm f e cospm(y-b) dy 

Jo Jyo 
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which also may be simplified. 

Ky - d ̂  Ym [/Vn Cym + Bm Cym] 
m=0 (3.46) 

Vm=(.ire'".1 

Cym(v) - I I 
Jo 

e'^cos(Pmy) dy = 
e [jvcos(pmyo) + PmSin(Pmyo)] " jv 

Pm-v' 

:>)=f 
ho 

Cym(v) = e' cosPm(y-b) dy = 
ho 

jvcospm(yo-b) + PmSinpm(yo •b)] 

Pm-v' 

These equations were evaluated numerically in order to determine the 
dimensions and feed location of the antenna to obtain the desired input 
impedance and resonant frequency of 50Q and 1.15 GHz respectively. The 

results of this analysis are shown in Fig. 3-7. Since actual losses are often higher 

than those included in the cavity model, the input impedance antenna was 

designed to be slightly higher in an attempt to obtain an experimental value of 
50Q. The impedance loci for the devices were measured with an HP8753A 

network analyzer, and 74.5ps of electrical delay was added to compensate for the 
length of the SMA connector feed. The measured input impedance for the 

microstrip antenna in example 1 is plotted in Fig. 3-8. The input impedance is 
48.1 £2 at a resonant frequency of 1.1446 GHz which are very close to the design 

values. The theoretical and measured impedance loci for the resonator circuit of 

example 2 are shown in Figs. 3-9 and 3-10 respectively. Both the cavity model 

and experiment result in a resonant frequency of 1.5755 GHz, and a parallel 
resistance of about 1.4kA due to radiation, dielectric and conductor losses. Note 

that the agreement between experiment and theory is excellent in both cases. 
The measured locations of the higher order modes for example 1 are also in good 

agreement with theory. 
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Fstart=500MHz Fstop=1.6GHz 

1 : TM01 mode 
51.8Q 
1.145GHz 

2: TM10 mode 
20.2a 
778MHz 

3: TM11 mode 
12.8a 
1.385GHz 

4: TM20 mode 
64.0n 
1.556GHz 

Figure 3-7. Predicted microstrip antenna impedance for example 1 
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CHI Su 1 U FS Jj 

12/17/92 MICROSTR 

Cor 
Del 

48.076 o 

TfiNNK 
-701.17 mn 198.32 pF 

1 144.563 612 MHz 

a 17-528 a 
-221.68 mn 
<73.900 MHz 

a \10.845 n 
-^«9.98 mo 

^ - 1"" ̂  V, i^90 GHz 

\ >^27 o 
^ \ ï .&le GHz 

START 500.000 000 MHz STOP 1 600.000 000 MHz 

Figure 3-8. Measured microstrip antenna impedance for example 1 
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X / 

Fstart=0.3MHz Fstop=1.6GHz 

1: Parallel mode 
1.463kA 
1.575GHz 

2: Series mode 
45mQ 
880MHz 

Figure 3-9. Predicted microstrip antenna impedance for example 2 
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4.994 nH CH1 S22 l; 1.4298 kn 049.44 n 

11/28/92 0.5IN REa 1 575.524 633 MHz 

139.05 mo 
—405.09 mn 
V879.5 MHz 

STOP 1 800.000 000 MHz START 300 000 MHz 

Figure 3-10. Measured microstrip antenna impedance for example 2 
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CHAPTER 4. RADIATION FROM PIEZOELECTRIC DEVICES 

In this chapter a piezoelectric correction will be added to the microstrip 

antenna analysis discussed in Chapter 3 in order to predict the electromagnetic 
radiation characteristics of the bulk acoustic wave resonator depicted in Fig, 1-3. 
The predicted electromagnetic radiation spectrum is experimentally confirmed by 

measuring the radiated power from quartz and lithium niobate resonators. To the 
best of this authors knowledge, this is the first time that a bulk acoustic wave 
resonator has been analyzed as a microstrip antenna with a piezoelectric 

substrate. Therefore, the work presented in this chapter is believed to be unique, 

and is the most significant contribution of this thesis. 

Single Mode Separation of the Coupled Wave Equation 
It is shown in this section that if only one acoustic thickness mode is 

excited, the coupled wave equation Eq. (2.11) can be approximately separated 
into a z-dependent acoustic term and an x,y-dependent electromagnetic term. 

The subscript terminology is employed to specify the coordinates (xi,x2,x3), and is 

related to the (x,y,z) specification as shown in Table 2-1. The conductor areas of 

the devices considered in Chapter 2 are electrically small, and the electric field 

strength is effectively constant over the surface of the conductor. If the conductor 

area is not electrically small, then the electric field strength may vary over the 

resonator surface. However, under the quasi-static approximation for 

piezoelectric devices the acoustic field will only couple to the irrotational part of 

the externally applied electric field. The irrotational part of the applied electric 
field is the DC mode which has no xi or X2 dependence. Since the acoustic field 

couples only to the irrotational part of the applied electric field, under the 

assumption that only one acoustic thickness mode is excited the acoustic fields 

within the device will also have no xi or X2 dependence. Thus, for the X3 

dependent acoustic variables the del operator may be approximated by 

V = X3 — 

. (4.1) 
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Assuming AC steady state fields, from Faraday's law and Ampere's law 

Eqs. (2.4) and (2.5), the wave equation for the X3 directed electric field is 

2 
V X V X E = + Û) |j.D ^4 2) 

where J is the X3 directed source current density. From Eq. (4.1), the strain is 
related to the displacement by 

Sk3 = VgUk = 
9X3 (4.3) 

In Chapter 2 a wave equation Eq. (2.37) was derived for the displacement within 

the device. Applying Eq. (4.3) to Eq (2.37), the acoustic wave equation may be 
written in terms of the X3 dependent strain: 

——^ + Ka Sks = 0 
3x1 (4.4) 

The subscript "A" has been added to the acoustic wave number so that it will not 

be confused with the electromagnetic wave number. Since the analysis is for a 

single acoustic mode, the constitutive relations are 

D3 = £33 E3 + e3k3 Sk3 (4 5) 

T3k= C3kk3 Sk3 - e33k E3 (4 6) 

Using the vector identity 

V X V X E = V (V-E) - V^E 

and substituting Eq. (4.5) into Eq. (4.2) the coupled wave equation becomes 



www.manaraa.com

68 

2 . 2  -
V (V-E) - V E = -jco|iJ + 0) ^(essEs + 63^38x3) X3 ^4 yj 

From Gauss's law Eq. (2.6), Eq. (4.5) and Eq. (4.1) the divergence of the electric 

field is approximately equal to 

V-E = v-Sk3==-^^^^ 
£33 633 9X3 

Applying Eq. (4.1) again 

V(V-E)«-^^-^X3 
£33 9X3 

Substituting this result into Eq. (4.7), canceling the X3 unit vector and expanding 
the vector Laplacian in rectangular coordinates one obtains 

2 2 2  2  
9 E3 9 E3 9 E3 2 e3i<3 9 Sk3 2 
—^ ^ + —Y "*• ® I^33E3 - j(0|aJ3 — - CO laesksSks 
9xi 9x2 9x3 G33 9x3 _ 

Newton's law Eq. (2.22) for a single thickness mode is given by 

^ = -pco'uk 
^X3 . (4.9) 

Equating Eq. (4.9) to the partial with respect to X3 of Eq. (4.6) one obtains 

9T3k 9Sk3 9E3 2 
= C3kk3 e33k = -po) Uk 

9x3 9x3 9X3 

Differentiating this result again with respect to xg and using Eq. (4.3) gives 
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2 2 
d Sk3 9 Eg 29Uk 2 

C3kk3 — - ©aSk %- = -pCO = -pCO SkS 

axi 3X3 9X3 

The second partial of the electric field with respect to X3 may now be solved for: 

2 2  2  
9 E3 _ pCO ^ C3kk3 9 Sk3 

9x1 ®33k e33k 9x1 

Substituting this result into Eq. (4.8) and rearranging, the wave equation becomes 

9 E3 9 E3 2  
r- + — + CO |i£33E3 " jCÛ|aJ3 = 

9xi 9x2 

e33k 
C3kk3 + 

©SSk e3k3 

E 3 3  

2 2 
9 Sk3 CO 

9x1 ®33k 
|ie33k e3k3 + p. Sk3 

(4.10) 

For useful piezoelectric materials: 

P » |4,e33k e3k3 

Neglecting this term, the wave equation may be written as 

3'E3+^^coVe33E3-iavJ3= 
9X1 9X2 e33k 

-2^ 2 
9 Sk3 . pco ÇJ ^ + = Sk3 

9X3 C3kk3 (4.11) 

where the stiffened elastic constant is 

C3kk3 = C3kk3 + e3k3 e33k / £33 

From Eq. (2.36) the acoustic wave number for a thickness mode is given by 
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, 2  2  —  
Ka = pO) / C3kk3 

The term in the square brackets of Eq. (4.11 ) is the one dimensional acoustic 

wave equation for the strain associated with a thickness mode and from Eq. (4.4) 
is equal to zero. Substituting Eq. (4.4) into Eq. (4.11), what is left is the two 
dimensional Helmholtz equation Eq. (3.1). 

Thus, under the given assumptions the coupled wave equation may be 

approximately separated into an acoustic wave equation for the xs-dependent 

strain and an electromagnetic wave equation for the xi and X2 dependence. The 

xi,x2-dependent electric field is given by the mode matching solution for the 2D 

Helmholtz equation and is the externally applied electric field. The total electric 

field for the device is approximately equal to the superposition of a xg-dependent 

acoustic term and the xi,x2-dependent electromagnetic term: 

Es'(Xi ,X2,X3) = E3(Xi ,X2) + ^(Xs) ^4 -| 2) 

where E3(xi,x2) is the mode matching solution and ^(xa) is defined as the 

piezoelectric correction factor [7]. 

To determine the piezoelectric correction, recall that the electric flux density 

of a thickness mode resonator is completely supplied by the externally applied 

electric field E3(xi ,X2) and is equal to 

D3 = e33E3(Xi,X2) 

Substituting this result and Eq. (4.12) into Eq. (4.5) one obtains 

D3 = E33E3(Xi ,X2) = E33[E3(Xl .X2) + ((X3)] + e3k3Sk3 

from which the piezoelectric correction factor is given by 

C(X3) = - Sk3 
^33 . (4.13) 
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Since It is assumed that only a single thickness mode is excited within the device, 

the displacement field is given by the one dimensional solution Eq. (2.45a), and 
the strain Srs is then equal to 

Sk3 = 
9uk leaks 

9X3 jC0A633C3kk3 

C0S(kAX3 - 0) 

COS0 

The piezoelectric correction factor is then equal to 

C(X3) = - Sk3 = K ! 
£33 jcoessA 

C0S(kAX3 - 0) 

COS0 (4.14) 

Radiation From Bulk Acoustic Wave Resonators 
From Eq. (4.12) the electric field within the device is equal to the mode 

matching result obtained in Chapter 3 with the addition of a piezoelectrically 
generated term. The radiated far fields from the piezoelectric term will then have 

to be vectorially added to the radiated far fields found in Chapter 3. Following the 
procedure outlined in Chapter 3, the substrate factor for the z-dependent 

piezoelectric term is 

kA (cos pd +1 ) p tan pd 

d cos pd d tan0 

where the superscript "p" indicates piezoelectric. The radiation model for the 

piezoelectric term is a loop of constant magnetic current placed on the periphery 

of the device. The magnitude of this current for a 1A input current is 

k" = C «Z) dz = 
Jo jcoAe33 

tan0 

0 
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Since the piezoelectric term has no x,y-dependence, the Fourier transforms are 

equal to 

The radiated far fields for the piezoelectric term are found with Eq. (3.29b), 

however the Fourier transforms and substrate factor with the superscript "p" are 

used instead of Eq. (3.26), Eq. (3.45) and Eq. (3.46). The entire radiated far fields 
for the structure are the vector sum of the far fields from the piezoelectric term and 

the far fields computed in Chapter 3. 

The reason for computing an effective quality factor in Chapter 3 was to 

incorporate the three different electrical loss mechanisms into the impedance 

calculation. The quality factor of an electromagnetic resonator as defined by Eq. 
(3.32) only has meaning at the electromagnetic resonant frequency of the cavity. 

Since the acoustic resonators are not necessarily electromagnetically resonant, 

the electrical losses will have to be incorporated into the impedance computation 

by some other means. An effective quality factor could be computed at acoustic 

resonance, however the only acoustic loss mechanism being considered in this 

study is viscous damping which can be incorporated into the impedance 

calculation through a complex elastic constant as in Eq. (2.51). The dielectric 

losses are included in the field computation by the use of a complex permittivity 

constant as shown in Fig. 3-1 a. Assuming a 1A drive current, the input 

impedance will be equal to the average voltage over the feed: 

'Xo + w/2 

'Xo - w/2 
V(x,yo) dx 

(4.15) 

where the rf voltage is 
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V(x,y) = - r Ez(x,y) + ((z) dz = -dE2(x,y) - — 

Through the use of complex parameters, the acoustic and dielectric losses 

have been included in the calculation of the input impedance using Eq. (4.15). 

The conductor and radiative losses have not been included in the impedance 

calculation, and these losses may be modeled by the inclusion of an additional 

parallel resistance. The conductor and radiation losses for the acoustic resonator 
are computed with Eq. (3.36) and Eq. (3.37) except the electric field now given by 

Eq. (4.12). The conductance of this additional parallel resistance is related to 

these losses by 

This approach to estimating the input impedance of a resonator has also been 

applied to microstrip antennas with good success [22]. The cavity model however 

produces somewhat more accurate results because the actual complex poles are 

included in the analysis of the lossy cavity [21,23]. 

In order to estimate the radiated power from the device, one must consider 

how the resonator is excited. The actual device is driven by a voltage source with 

some finite source impedance as shown in Fig. 4-1. Once the input impedance is 

known, the actual drive current and voltage across the device may be computed: 

Q _ Pç Prad 

iVavel (4.16) 

The input admittance of the device is then approximately equal to 

(4.17) 

V = Vs—^ 
Zjn + Zq (4.18) 
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Zin + Zo. (4.19) 

From the calculation of the additional conductance Eq. (4.16), the radiated 

electromagnetic power for a 1A drive current is available. An estimate of the 

electromagnetic power that is radiated from the device under the excitation shown 

in Fig. 4-1 may be obtained by scaling the result for a 1A input current as shown 
in Eq. (4.20) 

Prad = Prad 

|1A| . (4.20) 

Figure 4-1. Bulk acoustic wave resonator excitation 

Electrically Small Bulk Acoustic Wave Resonators 
Due to the roughly four orders of magnitude difference between the 

electromagnetic and acoustic wavelengths in the substrate material, useful bulk 

acoustic wave resonators are almost always electrically small devices. If the 

resonators can be assumed to be electrically small, the analysis can be greatly 

simplified. For an electrically small microstrip circuit, the conductors are 

equipotential surfaces and only the DC mode is excited. The electric field is then 
irrotational and is related to the potential function by 
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E = -V(|) 

Since the substrate is on the order of half an acoustic wavelength thick, it is 

electrically thin and the substrate factors given by Eq. (3.22) are approximately 
equal to zero. In the limit as d approaches zero the expressions for the radiated 
far fields of an infinitesimal normalized horizontal magnetic current ribbon 

embedded in a grounded dielectric Eq. (3.25) and Eq. (3.27) reduce to [26]: 

E2"°'(r,e,<p) = -M!i-e-i^'sin<p 
27nior (4.21a) 

Ej'"'^(r,0,(p) = cose cos(p 
27rrior (4.21b) 

ES'"^(r,0,(p) = - cos(p 
27nior (4.21c) 

Effl'^^(r,e,(p) = e"''^'^ COS0 sincp 
27rTior (4.21 d) 

The radiation model for the antenna that is shown in Fig. 3-3 consists of a 

magnetic current ribbon around the periphery of the device. The magnetic current 

density for an arbitrary electric field is given by Eq. (3.18). From Eq. (3.20), the 

magnetic current density may be integrated over the substrate thickness to 

condense the current ribbon into a filamentary magnetic current. 

rd fd ^ ^ ̂  fd ^ ̂  

K = I Ms(z) dz = I E X n dz = (z X n) j Ez dz = -V(z x n) 
Jo Jo Jo lA oo\ 

The radiation model therefore reduces to a loop of magnetic current placed 

around the periphery of the device, and the magnitude of the magnetic current is 
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equal to the voltage applied to the resonator. The total radiated far fields are now 

expressed as [26]: 

where the Fourier transforms of the magnetic current are defined in Eq. (3.30). 

The radiated fields are functions of the voltage across the resonator which can be 
computed with Eq. (4.18) once the input impedance of the device is known. The 

radiated electromagnetic power may be estimated for a general electrically small 

bulk acoustic wave resonator as long as the input impedance function is 
available. Since the conductors are assumed to be equipotential surfaces and 

the electric field conservative, this formulation is valid for a general resonator. A 

three dimensional resonator is a multiple mode stmcture, and its electric field will 
be some complicated function of x,y and z. However, since the electric field is 
conservative, the line integral from one conductor to the other over any arbitrary 

path is equal to the voltage applied to the conductors. Thus, if the impedance of 

the resonator is available via a finite element computation or measurement, Eq. 

(4.22) is still valid as long as the device can be considered electrically small. 

Bulk Acoustic Wave Resonator Radiation Examples 
Consider an electrically small resonator having the same topology as the 

device shown in Fig. 3-6. The Fourier transforms are 

. "jkoT r 1 

Ee(r,e,(p) = ^ [KX(U,V) sincp - Ky(u,v) cosçj 
(4.23a) 

(4.23b) 
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and the radiated far fields become 

Ee(r,e,(p) = (1 . (1 . e'"^: 
u V 2jcTior (4.24a) 

E(p(r,e,(p) = - (1 - e^"^) (1 - e'""") cos0 
27CTior 

sin(p cos(p 
+ — 

V u 
(4.24b) 

Thus for the case of a rectangular resonator, the radiated fields may be 

written in closed form as a function of the voltage across the device. The radiated 

field strength is directly proportional to the voltage applied to the device, and from 

the form of Eq. (4.18) one would expect a drop in the radiated power at series 

resonance and an increase in the radiated power at parallel resonance. To 

illustrate this point consider the resonator parameters listed in Table 4-1. 

Assuming that the devices are one dimensional, the input impedances may be 
estimated with Eq. (2.47) and the voltage across the devices computed with Eq, 

(4.18). Shown in Figs. 4-2, 4-3, 4-4 and 4-5 are the predicted input impedances 
for the devices as computed with Eq. (2.47), and the radiated power spectrums 
near the resonant modes for a 10V source with a 50£2 source impedance. As 

expected, for both cases there is a sharp drop in the radiated power at series 

resonance. There is also a rise in radiated power at parallel resonance, however, 

the increase is large for the lithium niobate device but barely visible for the quartz 

resonator. This is because the lithium niobate resonator has a lower impedance 
then the quartz device, and the increase in the voltage across the resonator due 
to the impedance increase at parallel resonance is much greater. 

Both the mode matching method Eq. (4.20) and the electrically small 

technique Eq. (4.24) were used to compute the radiated power spectmms for the 

resonators being considered. For the quartz device, the power curves generated 

by the two different methods lay directly on top of one another as evident in Fig. 4-
3. This implies that the electrically small approximation is very accurate for the 

quartz device near the fundamental mode resonance. For the case of the lithium 
niobate device, the two power curves can be resolved as shown in Fig. 4-5. 
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This is because the device is being operated at a higher frequency (~22.8MHz), 
and lithium niobate has a higher dielectric constant (er =29) than quartz. The 

lithium niobate device is electrically larger than the quartz resonator and thus a 

more efficient radiator. This is why the mode matching method predicts a slightly 

larger amount of radiated power than the electrically small technique. The 
electrically small approximation for this example is less accurate. However, the 

values computed from the two methods differ by less than 1 %, and the electrically 
small assumption still provides a good estimate of the total radiated power. 

Table 4-1. Bulk acoustic wave resonator parameters 

Parameter AT quartz Z lithium niobate 

Mode shear longitudenal 

Resonance fundamental 1 St overtone 

a (cm) 5.0 5.0 

b (cm) 5.0 5.0 

d (^m) 292 485 

c (N/m^) 29x10® 245x10® 

e (C/m^) -0.095 1.3 

e (F/m) 3.63x10'^^ 25.667x10'""^ 

P (kg/m^) 2650 4640 

11 (N-s/m^) 8x10^ 5xicr* 

tanô 0.0028 0.0028 

fs (MHz) 5.664 22.779 

fp (MHz) 5.684 22.806 
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Fstart=5.165MHz Fstop=5.715MHz 

Figure 4-2. Predicted input impedance for the AT-quartz resonator 
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Figure 4-3. Predicted radiated EM power for the AT-quartz resonator 
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/ / )  

Fstop=23.05MHz Fstart=22.55MHz 

Figure 4-4. Predicted input impedance for the lithium niobate resonator 
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Figure 4-5. Predicted radiated ElVI power for the lithium niobate resonator 
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In order to verify the theoretical results, the resonators specified in Table 4-

1 were fabricated on three inch wafers. The wafers were completely metalized on 
one side with approximately O.Sjim of aluminum. Using the same metalization, a 

5cm by 5cm resonator with a 1.0cm by 0.6cm feed line was patterned on the other 

side as shown in Fig. 4-6. A block diagram for the test setup to measure the 
electromagnetic power being radiated from the devices is shown in Fig. 4-7. 

Figure 4-6. Bulk acoustic wave resonator topology 

HP8753A 
Network Analyzer 

HP3585A 
Spectrum Analyzer 

BAW 
Device 

Test Fixture 

^))))>-
AM 
Ant. 

Figure 4-7. Test setup for measuring the radiated power spectrum 
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The resonator and receive antenna are mounted on a test fixture which is 
illustrated in Fig. 4-8. The resonator being tested is clamped to a copper clad 

printed circuit board. The clamps, with ordinary pencil eraser as a padding 

material, gently press the ground plane side of the wafer to the copper cladding 

making an electrical contact. The entire surface of the copper clad board is then 
the ground plane for the experiment. A 5.2cm by 5.2cm hole was cut in the board 

underneath of the resonator in order to provide a traction free surface for the back 

side of the device. The excitation is provided via a 10cm piece of 0.085in coaxial 

transmission line. An SMA connector is mounted on one end of the line, and the 

shield and dielectric have been stripped away from the other end exposing the 

center conductor. The outer shield of the line was then soldered to the copper 

clad board to provide a ground plane contact, and another clamp was used to 

press the center conductor of the line onto the feed pad of the resonator. The 

resonator is driven by an HP8753A network analyzer from which the input 

impedance is measured. On the edge of the board, an AM loopstick antenna is 
mounted about 12cm above the ground plane. The terminals of the antenna are 

connected to another SMA connector which serves as the input to an HP3585A 

spectrum analyzer. Electromagnetic radiation emanating from the device is 
picked up by the AM antenna and detected with the spectrum analyzer. The 

spectrum analyzer was set in a peak hold mode so that the detected radiated 

power may be displayed as a function of frequency. 

The goal of this experiment was to verify the shape of the radiation 

spectrum predicted by theory and not to attempt to measure the total power 

radiated by the resonator. In other words, the experiment was performed to 

determine if the radiated power level really does fall off at series resonance and 

increase at parallel resonance. The absolute magnitude of the measured power 

spectmms cannot be compared with what is predicted by the theoretical 

calculation for the following reasons. First, what is predicted by theory is the total 

power radiated by the device where the Poynting vector has been integrated over 

the entire upper half space. In the experimental results, just the power picked up 

by the AM antenna is plotted. It would be very difficult if not impossible at these 

frequencies to experimentally integrate the total radiated power over the upper 

half space. Such a measurement would have to be performed in an anechoic 
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Figure 4-8. Bulk acoustic wave resonator test fixture 
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chamber and would require a complete characterization of the AM antenna. 

Second, the frequencies where these devices operate (5MHz~22MHz) are 

considerably higher than the frequency range that the AM antenna was designed 

for (~1 MHz). Some of the incident power to the AM antenna is probably being 

reflected and not being detected by the spectrum analyzer. Third, the 

measurements were not made in an anechoic chamber, therefore reflections from 

various objects in the lab could alter the amount of power detected by the 

spectrum analyzer. Also, the distance separating the resonator from the AM 
antenna is only about 15cm which is probably not in the far field of either device. 

The theoretical calculation computes only the far fields of the antenna. If one 

were not in the far field, the 1/r2 power law would not be obeyed and the 

measured power would differ from what would be predicted by theory. With all of 
the above points in mind one could not hope to experimentally measure the total 

amount of power that was radiated from the bulk acoustic wave resonator. 

The measured input impedances for the resonators are plotted in Figs. 4-9 

and 4-10. The output power of the network analyzer was set to 23dBm in order to 

get the detected signal level well above the noise floor of the spectrum analyzer. 

The agreement between theory and measurement is fairly good except for the 

spurious modes which are not predicted by the one dimensional theory. The loss 

and thickness parameters listed in Table 4-1 were optimized to obtain agreement 

with the measured data. The experimental radiated power spectmms are plotted 

in Figs. 4-11 and 4-12. The shape of the measured power spectrum is in 

excellent agreement with the theoretical computation with the exception of the 

spurious modes. As predicted, at series resonance there is a rapid decrease in 

the radiated power from the resonators, and at parallel resonance there is an 

increase in the radiated electromagnetic power. Also consistent with the 

theoretical results is the relative magnitude of the radiated power increase at 

parallel resonance, which is large for the lithium niobate device and small for the 
quartz device. The results of this experiment support the analytical method 

described in this chapter for the computation of the radiated electromagnetic 
fields from a bulk acoustic wave resonator in the vicinity of acoustic resonance. 
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Figure 4-9. Measured input impedance for tlie AT-quartz resonator 
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Figure 4-10. Measured input impedance for the lithium niobate resonator 
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Figure 4-11. Measured radiated EM power for the AT-quartz resonator 
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Figure 4-12. Measured radiated EM power for the lithium niobate resonator 
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CHAPTER 5. INTEGRATED MICROSTRIP ANTENNAS 

Thin Metalizations 
For the examples in Chapter 3, the copper metalization was many skin 

depths thick at the operating frequencies of the devices. Aluminum metalizations 
used in integrated circuit technology are typically 0.1 nm to 2.0|xm thick. Therefore 

for examples 1 and 2, a typical integrated circuit metalization would not even be 

one skin depth thick and the amount of energy dissipated in the conductors would 

increase. In order to accurately predict the performance of an integrated 

microstrip antenna, the effect of metalizations which are not many skin depths 
thick needs to be characterized. 

First, consider the interface between a dielectric region and an infinitely 
thick conducting slab, where the fields in the dielectric region are known. The 

dielectric fields are computed assuming the conductor to be perfect, and for a 

microstrip antenna would be those found with the mode matching method. 

Boundary conditions dictate that the component of the magnetic field tangential to 

the interface must be continuous. For an interface located at z=0, the magnetic 

field penetrating into the conductor is given by 

The tangential magnetic field at z=0 is found from the mode matching solution. 

The magnetic field is in the form of a wave traveling into the conductor, and the 

connection between the magnetic field and the electric field is the intrinsic 

impedance of the medium. For a good conductor, the intrinsic impedance is 

H = Htan(z=0) e^ 

where the propagation constant for a good conductor is 

(5.1) 

(5.2) 
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For a conductor of thickness t, the metallic slab may be thought of as a 
transmission line of length t, impedance ti and propagation constant y [31]. 

Assuming that free space exists on the other side of the conductor, the line is then 
loaded with a real impedance of 377Q, The transmission line model for the 

analysis of a thin conductor is illustrated in Fig. 5-1. The magnetic and electric 

fields within the conductor are modeled as the current and the voltage on the line 

respectively. Assuming that the input current ii is equal to 1A, the power loss per 
unit area for the conductor is then equal to 

Expressions for the port voltages and output current are easily obtained from the 

ABCD matrix for a segment of lossy transmission line: 

Rs = Re {vi+ V2i2*} (5.3) 

vi = Ti coth(Yt) —^ csch (7t) 
Ti coth(7t) + 377 (5.4) 

T| coth(7t) + 377 

- T| csch('yt) 

(5.5) 

V2 = 
Z77r\ csch('yt) 

TI coth(7t) + 377 (5.6) 

Note that in the limit as t grows large, the port parameters approach 

V-| —> T| V2 —> 0 I2 —^ 0 

The power loss per unit area per unit current for a thick conductor is then 

Rs = Re {Ti} = /\/^ 
V 2a (5.7) 
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Figure 5-1. Transmission line model for good conductors 
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which Is equal to the classical expression for the surface resistance of a good 
conductor. Thus, an effective surface resistance for the conducting layer is 

provided by Eq. (5.3), and the conductor losses are now calculated with 

Since the thin conductor model is a transmission line model, it is also valid for the 

multilayer metalizations that are often used in hybrid and integrated microstrip 

circuits. To analyze multiple layers of different metals one would simply cascade 

the ABCD transmission line matrices for each layer, and compute the port 

voltages and output current for a 1A input current. An effective surface resistance 
is then obtained from Eq. (5.3). 

Plots of the effective surface resistance versus conductor thickness for 
aluminum at frequencies of 1GHz and 2GHz are shown in Fig. 5-2. The losses 

are very large for extremely thin conductors and decrease rapidly as the 

conductor is made thicker. These additional losses will cause a decrease in the 

resonant resistance of the antenna. It appears that for aluminum at these 
frequencies, a conductor thickness of about 2|j,m is sufficient, and this metalization 

is obtainable with current integrated circuit technology. Shown in Fig. 5-3 are 

plots of the output current \2 appearing at the other side of the conductor. This 

represents the current that tunnels through the conductor and would have to be 
added to the radiation model in Fig. 3-3. Note that with the exception of very thin 

metalizations, the current which appears on the top surface of the antenna is 

extremely small in comparison with the current on the bottom surface (ii =1A). For 

typical integrated circuit metalizations, at the frequency range of interest the 

current on the top surface of the microstrip antenna would radiate a very small 

amount of power in comparison with the other equivalent sources. Thus, the 

equivalent surface current on the top side of the antenna is neglected in the 

calculation of the power radiated from the antenna. 

To experimentally confirm the results of the theoretical calculation 

concerning the effect of the metalization, microstrip antennas where fabricated at 
the MRC on nominally 254|im thick AT-quartz substrates. Since AT-quartz is 

(5.8) 
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piezoelectric, the dielectric constant eT= 4.6eo will have to be used in the cavity 

model calculation [7]. These antennas have exactly the same topology as the 
quartz resonators shown in Fig. 4-6, and the electromagnetic resonant frequency 

is about 1.4GHz. Acoustically, the resonator is operating at about the 125th 

overtone which would be so weakly excited that there would be no measurable 
effect on the input impedance. In other words, the AT-quartz resonators from 

Chapter 4 are being characterized as half wavelength long microstrip antennas, 
and the acoustic wave generation at the electromagnetic resonant frequency is 
neglected. The aluminum metalization thickness ranged from about 0.3|xm to 

2.0|im in order to observe of the effect on the resonant resistance of the antennas. 

The resonant resistance of the microstrip antennas was measured with an 
HP8753A networi< analyzer with the wafer mounted in the test fixture shown in 

Fig. 4-8. The section of coaxial transmission line was compensated for with the 

addition of 1.0723ns of electrical delay, and the effect of the feed line was backed 

out of the measured input impedance locus with Libra simulations. The 
experimental and theoretical results for the resonant resistance are shown in Fig. 

5-4. Using Eq. (5.3) for the effective surface resistance, the resonant resistance 

computed with the cavity model is plotted as the solid curve for a wafer thickness 

of 254|j,m. Since the wafer thicknesses were found to vary between 254|j,m and 

305^m, the 305|im curve is also plotted. The measured resistance at resonance 

for a variety of metalizations appear as the solid dots. Note that the agreement 

with theory is fairiy good, and all of the measured points fall within the tolerance 

range for the wafer thickness. The results of this experiment indicate that it is 

reasonable to model the effect of thin metalizations on microstrip antenna 

performance with the use of an effective surface resistance given by Eq. (5.3). 

Radiation Efficiency 
The primary function of an antenna is to radiate electromagnetic energy 

into free space. The figure of merit describing a particular antenna's ability to 
perform this function is the radiation efficiency. The radiation efficiency of an 

antenna is defined as the total radiated real power divided by the total real power 

absorbed by the antenna. This may be written as follows: 
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Pr + Pd + Pc . (5.9) 

The efficiency can also be expressed in terms of the individual quality factors: 

1/Qr 
1/Qr + 1/Qd + 1/Qc 

At the resonant frequency of the antenna, OOQI the energies stored in the electric 

and magnetic fields are equal, and the dielectric and conductor quality factors are 

1/Qd = tanô 

1 /Qc = 2Rs 

^idcoo , 

Substituting these results into the efficiency expression gives 

1/Qr 

1/Qr + tanô + 
2Rs 

PdWo . (5.10) 

The resonant frequency for the TMoi mode is approximately 

7t 
Oh = —1= 

LVe|i (5.11) 

where L is the resonant length of the antenna. 

Examining Eq. (5.10), in order to make an efficient microstrip antenna the 

following design rules must be followed. First, from Fig. 5-2, the thinner the 

metalization the larger Rg becomes which reduces the radiation efficiency of the 
antenna. Therefore, the metalization layer needs to made thick, such that the 
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effective surface resistance Eq. (5.3) is approximately equal to the thick metal 
value Eq. (5,7). Also from the efficiency relation, the antenna becomes more 

efficient as the substrate thickness, d, is increased. Note that as the substrate 

thickness approaches zero, so does the radiation efficiency of the microstrip 

antenna. If the effective surface resistance is reduced, then for a given efficiency, 

the substrate thickness can also be reduced. One way to reduce the effective 

surface resistance of the metalization by as many as two orders of magnitude over 
that of aluminum is to use a superconducting material. The use of 
superconducting materials could greatly improve the performance of integrated 

microstrip antennas on electrically thin substrates. Also for a set of microstrip 

antenna dimensions, the radiation efficiency is reduced for substrates with a high 
dielectric constant because the resonant frequency OQ is decreased. Radiation 

efficiency may also be improved by decreasing the dielectric loss tangent of the 

substrate material. Another way to increase the radiation efficiency of a microstrip 

antenna which is not obvious from Eq. (5.10), is to increase the width of the 

antenna. Making the antenna wider increases the length of the radiating sides 

thus increasing the amount of power radiated into free space. This has the effect 
of increasing 1/Qr in Eq. (5.10), and therefore increases the efficiency of the 

antenna. 
Silicon dioxide (Si02) layers up to about 25|im thick may be realized with 

integrated circuit processing techniques and should be considered as a substrate 

material. As previously mentioned, the radiation efficiency of the antenna may be 

improved by reducing the dielectric constant and loss tangent of the substrate. A 

substrate with a dielectric constant near unity and a loss tangent close to zero 

may be obtained by selectively etching an Si02 layer, leaving the conducting 

patch supported by a series of posts. This is the so called "bed of nails" concept 

which is illustrated in Fig. 5-5 [1]. To investigate the feasibility of this structure, 

radiation efficiency versus resonant frequency calculations were made with the 

following parameters. For the pure SiOa substrate the dielectric constant and loss 

tangent were assumed to be 4.0 and 0.001 respectively [26]. To model the "bed 

of nails" substrate, a dielectric constant of 1.01 was used along with a loss tangent 
of 10-6. For both cases the metalization is assumed to be 2|j,m of aluminum and 

the width of the antenna is 1.5 times the resonant length. 
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Figure 5-5. "Bed of nails" integrated microstrip antenna substrate concept 

The calculations were made for both the pure Si02 and the "bed of nails" 

concepts over a frequency range of 1 GHz to 50GHz with substrate thicknesses of 
lO^im, 15|im, 20|im and 25|im. The results are shown in Fig. 5-6 and Fig. 5-7. 

Note that in both cases an efficiency level greater than 10% is not realized until 
the operating frequency of the antenna is extended well above 10GHz. The 
radiation efficiencies for microstrip antennas on 25|im thick Si02 and "bed of 

nails" substrates were computed to be 0.30% and 0.47% respectively at 2GHz. 

Thus, for the 1 GHz to 2GHz frequency range of interest, neither the pure Si02 or 

"bed of nails" substrate concepts obtain high enough radiation efficiency levels to 

be used in this work. 

The inability to deposit a thick enough layer of dielectric material with 

standard integrated circuit processing technology is probably the most severe 

constraint limiting the ultimate performance of an integrated microstrip antenna. 

Closed cell foams could be used to realize substrates with dielectric constants 

near unity, and could possibly be deposited in a thick enough layer to overcome 
the substrate thickness problem without the use of superconductors. A material 
called thermoset microwave foam (TMF) has received some attention for its 

application to microstrip antennas [20]. Further investigation is however required 

to determine if TMF is a good candidate for an integrated microstrip antenna 

substrate material. 
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Integrated Microstrip Antenna Design 
In this section, the steps required to design an integrated microstrip 

antenna are discussed. Design examples are presented for aluminum and 

superconducting metalizations on TMF substrates. Also, an analysis example is 
presented for an aluminum antenna on a 635|im thick gallium arsenide substrate. 

For the two design examples, system specifications require the antenna to have a 

radiation efficiency of at least 50% and it must fit on a three inch semiconductor 
wafer. The antenna is to be edge fed with a 1 mm wide transmission line and 
have an input return loss greater than 20dB in a 50Q system. 

For the first design example, consider a 6.35cm long aluminum microstrip 

antenna on a TMF substrate material. The dielectric constant and loss tangent for 

TMF are approximately equal to 1.4 and 0.0006 respectively [20]. From Eq. 

(5.11), the resonant frequency of the antenna for the TMoi mode is approximately 
2GHz. The first step is to determine the required thickness of the aluminum 
metalization. Examining Fig. 5-2, a 2.0|xm thick layer of aluminum will result in an 

effective surface resistance which is about 98% of the thick metal value. 
Therefore, a 2|im aluminum metalization will be used. The next step is to use the 

cavity model at 2GHz and plot the efficiency versus substrate thickness curves for 

a number of different antenna widths. The results of this calculation are shown in 

Fig. 5-8, and from these curves the width of the antenna and the substrate 

thickness may be determined. From the plots, a 508|im thick substrate and 

5.08cm wide antenna will satisfy the efficiency and size requirements. 

Concerning the next design example, it was mentioned earlier in this 
chapter that the substrate thickness can be greatly reduced by the use of 

superconducting materials. To illustrate this point, plotted in Fig. 5-9 are the 

efficiency versus substrate thickness curves for a thick metalization with a surface 
impedance of 100|iQ. This metalization parameter is typical for the modeling of 

high temperature superconducting microstrip circuits [32]. From Fig. 5-9, a 50% 

radiation efficiency may now be realized with a 5,08cm wide antenna and only a 
88.9|im thick TMF substrate. Note that the use of superconductors provides only a 

modest efficiency improvement for thick substrates. 
It was determined where to feed the antennas to obtain a 500 impedance 

match with consecutive cavity model calculations at the resonant frequencies. 
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The design and performance parameters for the two design examples are 
summarized in Table 5-1. The impedance loci and return loss curves for the 
antennas are plotted in Figs. 5-10 and 5-11. The computed resonant frequencies 

are slightly different than the values obtained with Eq. (5.11) due to the fringing 

fields at edges of the antennas. Both antennas meet the size and return loss 

specifications. Note that since the superconducting antenna is a high Q device, 

its bandwidth is considerably less than the aluminum antenna. 
One way to overcome the problems associated with depositing a thick 

enough dielectric layer on top of the semiconductor wafer is to use the 
semiconductor wafer itself as the microstrip antenna substrate material. Semi-
insulating 635|im thick GaAs wafers are available as a stock item and may be 

thick enough to obtain a reason level of radiation efficiency. Therefore, as a 

Table 5-1. Design and performance parameters for the antenna examples 

Parameter TMF1 TMF2 GaAs 

a 

b 

Xo 

Yo 

Thickness 

Plating 

Dielectric constant 

Loss tangent 

Feed probe 

Resonant frequency 

Radiation efficiency 

Resonant resistance 

3:1 VSWR banwidth 

6.33 cm 

5.08 cm 

2.15 cm 

0.00 cm 

508 |xm 

aluminum: 2,0|im 

1.4 

0.0006 

Microstrip: 1.0mm 

1.984GHz 

50.5% 

50.5n 

20.0MHz 

6.33 cm 

5.08 cm 

2.19 cm 

0.00 cm 

88.9 Jim 

superconductor 

1.4 

0.0006 

Microstrip: 1.0mm 

1.999GHz 

50.9% 

50.4a 

3.5MHz 

4.37 cm 

1.04 cm 

100 |im 

0.00 cm 

635 |im 

aluminum: 0.4|im 

13.0 

0.002 

Microstrip: 100|im 

995.5MHz 

0.75% 

143.4Q 
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Figure 5-10. Frequency response of the TMF/aluminum microstrip antenna 
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third integrated antenna example consider the following analysis problem. A 
4.37cm by 1.04cm microstrip antenna with 0.4|j.m thick aluminum metalization on 

a 635|im thick gallium arsenide substrate where the back side of the wafer is 

completely covered with the same metalization. The antenna is edge fed with a 
100|xm wide microstrip line and from Eq. (5.11) has an operating frequency of 

about 952MHz. An antenna similar to this example is being considered for use in 
a prototype overmoded acoustically driven antenna system. The antenna 
parameters are listed in Table 5-1 and the predicted impedance locus of the 

antenna is shown Fig. 5-12. 

/// 

Fstart=900MHz Fstop=110OMHz 

Figure 5-12. Predicted impedance locus for the GaAs microstrip antenna 
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The computed radiation efficiency of the antenna is only 0.75%. The low 
efficiency is due in part to the 0.4|xm aluminum metalization. Shown in Fig. 5-13 

are the efficiency versus thickness curves at 1 GHz for a GaAs substrate with a 
2.0|im thick aluminum metalization. From the figure, by using a 6.35cm wide 

microstrip antenna the efficiency could be improved to 12.5%. This is still a 

relatively inefficient radiator, and it appears that for the frequency range of interest 
(1GHz-2GHz), the dielectric constant of GaAs is too high for use as a 
practical microstrip antenna substrate material. At higher frequencies, an efficient 
microstrip antenna could possibly be constructed on a 635|xm thick GaAs 

substrate. 
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Figure 5-13. GaAs/aluminum microstrip antenna radiation efficiency 
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Acoustically Driven Integrated Microstrip Antennas 
One of the original goals of this work was to analyze the acoustically driven 

microstrip antenna topologies shown in Fig. 1-1 and Fig. 1-2. The input 

impedance of the integrated microstrip antenna can be computed with the 

technique outlined in this chapter, and the y-parameter matrices for the stacked 
crystal filters were found in Chapter 2. The acoustically driven antenna system 
can be analyzed as a stacked crystal filter loaded with a microstrip antenna. The 
two port representation of the system is shown in Fig. 5-14. 

Microstrip 
Antenna 

Impedance 

Stacked Crystal 
Filter 

y-parameter 
Matrix 

Figure 5-14. Two port representation of the acoustically driven antenna system 

The parameters of interest for the system are the input impedance, radiated 

power, and system efficiency. Let the system efficiency be defined as the ratio of 

the total real power radiated by the microstrip antenna to the total real power 

incident from the source to the input of the stacked crystal filter expressed as: 

Pine. (5.12) 

The input impedance of the system may be computed from the y-parameters as 

Yin = ̂  = yii -4^^% 
An 1+y22Za (5.13) 
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where Za is the input impedance of the microstrip antenna. The remaining system 
parameters are determined from the port currents and voltages: 

h  ̂
1 + y22Za + yilZo + ZoZa A (5.14a) 

V2 
yi2y2iZoZa - (1 + yiiZo)(i + yzzZa) (5.14b) 

_ • V2(1 + y22Za) 

y2lZa (5.14c) 

^i2(yii +ZoA) 

y2i (5.14d) 

A = yiiy22-yi2y2i. 

The real power which is absorbed by the microstrip antenna is equal to 

Pant = - Re {V2i2*} 

where the minus sign indicates that power is being absorbed by the load. From 

the radiation efficiency section of this chapter, the amount of power that will be 

radiated into free space by the microstrip antenna is related to the total power 

absorbed by the antenna through Eq. (5.9). The radiated power is then 

Pr = %Pant = " {V2i2*} (5.15) 

where ^ is the radiation efficiency of the microstrip antenna. The amount of real 

power which enters the stacked crystal filter is given by 

Pscf = Re {viii*} 
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The incident real power from the source to the input of the stacked crystal filter is 

related to the reflection coefficient of the system and power entering the filter by 

D _ Pscf Re{viii*} 
r inc- 2 2 

1 - IFinl 1 - IFinl (5.16) 

where 

r _ Zjn - ZQ 
in ^ 

Zjn + ZQ 

Substituting Eq. (5.15) and Eq. (5.16) into Eq. (5.12), the system efficiency is 

equal to 

As an acoustically driven integrated antenna example, consider a system 
consisting of an aluminum nitride fundamental mode stacked crystal filter driving 
the 1.984GHz TMF microstrip antenna that was analyzed in the previous section. 

From the stacked crystal filter analysis section in Chapter 2, a fundamental mode 

device operating at 1.984GHz would require 2.81 |xm thick aluminum nitride 

layers. The conductor dimensions are made to be 218x218|im to achieve 

maximum bandwidth in a 500 system [6]. The frequency response of the filter is 

shown in Fig. 5-15 where loss has been included in the calculation with the use of 
the following complex permittivity and elastic constants; 

C33 = (395 +j3.3)x 10® N/m^ 

E33 = (9.5-j0.25)x 10 '^^ F/m 

The input impedance locus and return loss results for the system are shown in 

Fig. 5-16. Note that the return loss plot has two nulls, one at the microstrip 

antenna resonance and another at a slightly lower frequency. Before resonance, 
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Figure 5-15. Frequency response of the fundamental mode stacked crystal filter 
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the microstrip antenna has an inductive impedance which resonates with the 
capacitive impedance of the stacked crystal filter. The stacked crystal filter feed 
circuit therefore has a broadbanding effect on the input impedance of the system. 

External components may however be required to tune the input return loss of the 
system in order to maximize the bandwidth. The broadbanding effect can also be 

seen in the system efficiency and radiated power plots shown in Fig. 5-17 and Fig. 

5-18 respectively. A maximum system efficiency of 27.9% was computed at a 

frequency of 1.982GHz. If the microstrip antenna had a 90% radiation efficiency, 

then about a 49.7% system efficiency could be achieved. The computed radiated 
power for a 1V-50Q source is flat within 0.5dBm over a 33MHz bandwidth. 

As a second example, consider an overmoded stacked crystal filter driving 

the 995.5MHz GaAs integrated microstrip antenna that was analyzed in the 

previous section. Recall, for this example the GaAs wafer itself is the microstrip 
antenna substrate. In an overmoded acoustically driven system the GaAs wafer is 

also the intervening substrate layer between the piezoelectric transducers. The 

topology of the system is shown in Fig. 5-19. From the overmoded filter analysis 
presented in Chapter 2, a 995.5MHz device with a 635|im GaAs wafer as the 

intervening non-piezoelectric layer requires 5|xm thick AIN layers. The conductor 

dimensions for maximum bandwidth in a 50Q system are 400|im by 400|am [6]. 

The frequency response of the filter is shown in Fig. 5-20 where loss has again 

been included by the use of complex coefficients. The complex elastic constant for 

the gallium arsenide substrate material is given approximately by [7], 

Cs=(119+j0.0952)x10®N/m^ 

Note that gallium arsenide is an acoustically lossy material which greatly 

increases the insertion loss of the overmoded filter. The frequency response of 

the acoustically driven antenna system is shown in Fig. 5-21. The system 
efficiency and radiated power plots for a 1V-50Q source are shown in Figs. 5-22 

and 5-23 respectively. A maximum system efficiency of 0.067% was computed at 

956.6MHz. At this frequency, the inductive impedance of the microstrip antenna 

resonates with the capacitive impedance of the overmoded stacked crystal filter. 

The low system efficiency is due to the low radiation efficiency of the GaAs 



www.manaraa.com

113 

c 0) 
"o 

i 

I 

1.90 10® 1.95 10® 2.00 10® 2.05 10® 2.10 10® 
Frequency (Hz) 
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microstrip antenna and the high losses in the stacked crystal filter. An integrated 

microstrip antenna on a gallium arsenide substrate driven by an overmoded AIN 
stacked crystal filter is therefore not practical. 
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GROUND PLANE 

GaAs WAFER 

GROUND PLANE 

AIN 
FILM 

Figure 5-19. Overmoded acoustically driven GaAs integrated antenna 
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Figure 5-20. Frequency response of the overmoded stacked crystal filter 
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Figure 5-21. Frequency response of the overmoded GaAs antenna system 
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Figure 5-22. System efficiency for the acoustically driven GaAs antenna system 
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CHAPTER 6. SUMMARY AND RECOMMENDATIONS 

The analysis of an acoustically driven integrated microstrip antenna system 

and the characterization of electromagnetic radiation from bulk acoustic wave 
devices at resonance has been presented. The antenna system consists of a 
fundamental mode or overmoded stacked crystal filter driving an integrated 

microstrip antenna. With this technology, completely integrated receiver systems 

could be realized where the antenna and electronics are separated by a 

conducting ground plane. Energy is acoustically coupled from the antenna, 

through the ground plane, to the electronic circuitry via the piezoelectric effect. On 

the radiating side of the structure resides a microstrip antenna and a piezoelectric 
transducer. To study the feasibility of such a system, the performance of 

microstrip antennas with thin substrates and metalizations was investigated. Like 
the microstrip antenna, the piezoelectric transducer is a resonant device and its 

electromagnetic radiation characteristics are also determined. 

Assuming the excitation of only one acoustic mode, one dimensional 

analysis was used to characterize the acoustic devices. For the filter structures, 

only the terminal characteristics are required for the analysis of the acoustically 

driven antenna system, and the y-parameter matrices for these devices are 

derived. In order to characterize the electromagnetic radiation from a bulk wave 
device, knowledge of the fields within the resonator are required. For a thickness 

mode resonator, the electric flux density is supplied entirely by the externally 

applied electric field and therefore the acoustic and electric fields existing within 
the device are determined with the input current as the independent variable. 

The integrated microstrip antennas that were studied are analyzed with the 

mode matching method and the cavity model. The electric field underneath the 

conducting patch is computed from the drive current by matching the resonant 

modes on either side of the feed. The surface equivalence principle is then 

applied and the microstrip antenna is replaced by equivalent sources. From the 

equivalent sources, the radiated far fields are determined. The effect of thin 

metalizations on the antenna characteristics are included by the use of an 

effective surface resistance. The effective surface resistance was determined by 

modeling the conductor as a transmission line loaded with an impedance of 



www.manaraa.com

119 

3770. Microstrip antennas were fabricated in order to experimentally confirm the 

theoretical results. 

It was found from the study that to realize an efficient microstrip antenna, 

constraints had to be placed on the thickness of the substrate and metalization. 
For the frequency range of interest, it was determined that a 2|im thick aluminum 

metalization is sufficient and is realizable with standard integrated circuit 

processing technology. Using this metalization and a substrate dielectric constant 
of 1.4, the substrate thickness needs to be 508|im to obtain a 50% radiation 

efficiency. Unfortunately, It is not possible to deposit a dielectric layer anywhere 

close to this thickness with standard integrated circuit processing techniques. 

Another way to increase the radiation efficiency is to use a superconductor 
instead of aluminum for the metalizations. Using a 100|iQ superconductor and a 

substrate dielectric constant of 1.4, a 50% radiation efficiency can be achieved 
with a substrate thickness of 88.9|xm. This however is still too thick for standard 

integrated circuit dielectric film deposition methods. In an attempt to overcome the 
substrate thickness problem, 635|im thick gallium arsenide wafers were 

considered as a substrate material. Unfortunately, the use of a high dielectric 
constant substrate further lowers the radiation efficiency of the antenna. Due to 

the high dielectric constant of GaAs, it was found that a maximum radiation 

efficiency of only about 12.5% at 1 GHz could be achieved. The key to the 

realization of an efficient integrated microstrip antenna for operation in the 1GHz 

to 10GHz frequency range is to identify a low dielectric constant substrate material 

that can be deposited in a thick layer. A possible candidate for such a substrate 
material is thermoset microwave foam (TMF). The feasibility of TMF as an 

integrated microstrip antenna substrate material requires further investigation, 

however, the theoretical results indicate that 2GHz antennas with near 90% 
radiation efficiency are realizable on a TMF substrate. 

The radiated electromagnetic fields from bulk acoustic wave devices were 

computed by two different techniques. For the first method, the coupled wave 

equation is separated into a independent term governed by an acoustic wave 

equation and an x,y-dependent term governed by the two dimensional Helmholtz 
equation. The separation is approximately valid under the assumption that only 

one z-dependent acoustic mode is excited. The solution of the Helmholtz 
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equation is provided by tlie mode matcliing method, and the solution of the z-

dependent acoustic wave equation is found from the one dimensional bulk 
acoustic wave resonator analysis. The total electric field, from which the radiation 

characteristics may be determined, is the superposition of the x,y and z-

dependent terms. For the second method, the resonator is assumed to be 

electrically small and the electric field is then conservative. This formulation is 

valid for a multimoded structure as long as the impedance of the resonator is 

available. This technique is restricted to electrically small devices, however, it is 

much easier to apply than the mode matching method. The results obtained by 

the two methods were found to differ by less than 1 % for the resonators 
considered. Both methods predict a null in the radiated electromagnetic power at 
series resonance and an increase in the radiated power at parallel resonance. 
This result was experimentally confirmed by measuring the electromagnetic 

power radiated from quartz and lithium niobate resonators. 

Using the results of the stacl<ed crystal filter and microstrip antenna 

analysis, the performance parameters of the acoustically driven integrated 

antenna system were determined. The system characteristics of interest are the 

input impedance, system efficiency, and radiated power. For an antenna on a 
508|a,m thick TIVIF substrate driven by a fundamental mode aluminum nitride 

stacked crystal filter, a maximum system efficiency of 27.9% at 2GHz was 

predicted. The stacked crystal filter also serves as an impedance matching 

section, increasing the bandwidth of the system. By further increasing the 

substrate thickness or by using superconducting materials, the system efficiency 

of the acoustically driven integrated microstrip antenna system could be pushed 

near 50%. 
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APPENDIX A: 2D FINITE DIFFERENCE PAPER 

TWO DIMENSIONAL FINITE DIFFERENCE METHOD FOR THE ANALYSIS OF 

PIEZOELECTRIC DEVICES' 

C. F. CAMPBELL and R. J. WEBER 

Department of Electrical Engineering and Computer Engineering 

Iowa State University, Ames, Iowa 50011 

ABSTRACT 

A general finite difference technique is described for tiie 
AC steady state analysis of two dimensional 
piezoelectric devices. The method is formulated to 
accommodate anisotropic and inhomogeneous 
material as well as variable mesh spacings such that 
irregular boundaries may be modeled. The method is 
then applied to bulk acoustic wave resonator and 
stacked crystal filter structures. For the resonator 
analysis, the results are compared with puoiished data. 

In a two dimensional problem, no variation is permitted 
in the X3 direction, and from (1,2,3,4) the following set of 
coupled partial differential equations may be derived 
where k=1,2,3 is summed for each j=1,2,3. 

Cljkl d\ 

3xi 
+ (Clik2+C2ikl) ^ + C2ik2 

8X18X2 
a^uk 
3X2 

3% , . + eiij —- + (e2ij+ei2j) 
3X1 

3 (j) 2 
+ 6221 —r = -pCO Uj 

3xi3x2 3x2 (5) 

INTRODUCTION 

In this paper the well known finite difference 
method is applied for the AC steady state analysis of 
two dimensional piezoelectric devices. This technique 
has been used by Lloyd and Redwood to study contour 
mode vibrations in thin rectangular plates. Langer et al 
for the transient analysis of SAW devices, and Lakin for 
composite bulk acoustic wave resonator analysis 
[1,2,3]. The purpose of this work is to generalize the 
finite difference techniques that appear in the literature 
and to compare the results with published data. 

THEORY 

Assuming linear material and steady state 
sinusoidal time dependence; the quasi-static equations 
for the modeling of piezoelectric devices are Newton's 
law. Gauss's law and the constitutive relations 
respectively as given below [4]; 

3Ti| 2 ^=-pCO Uj 
3xi ' 

3xi 
= 0 

3uk 91(1 Tii = Ciiki —+ ekii^ 

3uk 3i|) 

eiki 4.,«.«a,, 
ax; 

+ e2k2 2 
3XI3X2 3X2 

3^i|i , . 3^1)) - Ell —-- (ei2+E2l) 
3xi 3XI3X2 

- £22 —r = 0 
3X2 (6) 

After [2,3], equations (5,6) are written in a more general 
form by letting k=1,2,3,4 and j=1,2,3,4 where U4 = (#. 

^V+(Bik+Cik) 
3X1 — 3x13x2 3x2 

:X.jUj 
(7) 

P Û) 
0 

i= 1,2,3 
i = 4 

Ajk, Bjk, Cjk, Djk written in contracted notation are. 

Ajk kal k=2 k=3 k=4 Bjk k=l k=2 k=3 k=4 

i-i C11 C16 Cl5 611 i=1 C16 C12 Cl4 021 

(1) i"2 C16 C66 C56 616 1=2 C66 C26 C46 626 

1=3 Cl5 C56 C55 615 i=3 C56 C25 C45 625 

(2) 
1-4 eii ei6 @15 -eii j=4 616 612 614 -£12 

(2) 

Cjk k»1 k.2 k=3 k.4 Djk k=l k=2 k=3 k=4 

(3) i-1 C16 C66 C56 616 i=1 C66 C26 C46 626 

i-2 C12 C26 C25 612 1=2 C26 C22 C24 622 

1=3 Cl4 C46 C45 614 )-3 C46 C24 C44 624 

(4) i=4 621 626 625 -£21 i=4 626 622 624 -£22 
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Defining Qy = T|j for j = 1,2,3 and Qy = Dj for j = 4, the 
constitutive relations in general form become, 

Qii = Ajk —+ Bjk — 
3xi 9x2 (8) 

hg hw hn (hn + hs) „ he hw hs (hn + hs) Pnn = [—TZ Pss = -hs (ho - hw) hn (hw • he) 

n he hs hn (he + hw) o hn hw hs (he + hw) 
Pee — I,—,1  ̂ \ Pww — ' hw (hn " hs) he (hs - hn) 

U2j = Cjk + Djk -— 
9xi 3X2 

FINITE DIFFERENCE APPROXIMATION 

(9) 

The region of interest is discretized by a finite 
difference mesh of cells consisting of nine mesh points 
as shown in figure 1. The four quadrants may be of 
different materials and mesh spacings. 

o " (he + hw) (hn + hs) „ (he + hw) (hn + hs) 
PS8 = Z—/ u L. Psw - " hw hn / hshe hghn/hshw 

- (he + hw) (hn + hs) „ (he + hw) (hn + hs) 
hehs/hnhw hw hs/hnhe 

Pe = he(ho + hw) / 2 Pw = hw(hw + he) / 2 

Pn = hn(hn + hs) / 2 Ps = hs(hs + hp) / 2 

X2 

nw 

w 

sw 

n ne 

2 . 

0 e 

4 

s se 

he" 

Figure 1 

The partial derivatives are replaced with the following 
finite difference approximations [5], 

8 f fn - fo ^ fs • fp ^ fp - fp ^ fw " fp 
3XI3X2 Pnn Pss Pee Pww 

+ " '° + O(h^) 
Psw Pse Pne Pnw 

^=Î2^ + Î!!^ + 0(h') 
3xi Pe Pw 

(10) 

(11) 

he (he + hw) " hw (he + hw) OCe = C(w = r 

hn (hn + hs) - hs (hn + hs) 
F;— ^— 

Substituting these into (7), the following set of four 
difference equations result corresponding to j=1,2,3,4; 

uk Uk Uk uk ur ur ur ui;° ug _ _ 
,w -,n -yS _sw -yse -.nw -,ne -̂ o 

/L\k Zik Aik Zik Zik /ik 4k 4k 4k 4k 4k 4k 4k -^jk 4k 

The finite difference impedances are defined as, 
(15) 

1 _ Ajk ^ Bjk + Cjk 

Pe Pe 
1 Bjk + Cjk 

Pse 4' 

1 _ Ajk ^ Bjk + Cjk 
Z% Pw Pww 

1 Bjk + Cjk 
Psw Zsw ik 

-jk Pn 
_1 Djk I Bjk + Cjk _1 Bjk + Cjk 

Zjk Pn Pnn 

1 . Djk I Bjk + Cjk 

Zjk Ps Pss 
1 ... Bjk + Cjk 

-,ne 
Zjk Pn 

•^=Î!i^+ii!^ + o(h') 
9X2 Pn Ps 

— = îî^ + î!û^ + 0(h^) 
9xi tte aw 

9f fn • fo fs " fp 
9X2 OCn «s 

+ z_z + o(hi 

(12) 

(13) 

(14) 

J 
Zik •jk 

1 1 1 1  1  1  1  1  ,  + + + + + + — + A,j Ojk ,e -,w _,n -,s -,sw -yse -,nw -,ne ' Zik L4k 4k ^jk 4k 4k -ik 4k 

where 6jk is the Kronecker delta function. The finite 
difference approximations for the constitutive relations 
are obtained from (8,9). For the xi direction. 

Qii = ̂  + 
e w n S 0 Uk Uk Uk Uk Uk 

«*8 «yW «^n ^0 
Zjk Zjk Zjk Zjk Zjk (16) 
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with finite aifference impedances, 

1.A 
Zjk "e 

Zik ik 

Ctw 

1 

Ctn 

1_ 

4 Os 

1 11 + — + + " 
.4 z% 4 4J 

and the xa direction. 

Uk 
w n ,,s .0 Uk . Uk Uk , Uk 

' -,0 -7S -70 
Zjk Zjk Zjk Zjk Zjk 

with finite difference impedances 

J_^Cik ^^Cjk _L=:^ 

(17) 

Zik ae Zjk «w zjk «n Zjk «s 

J 
Zfu ik 

1 1 1 1  —— H + 4" •7® -y'V «^n Zjk Zjk Zjk Zjk_ 

To illustrate how the finite difference equations 
are applied, consider the following resonator geometry. 
A two dimensional device of rectangular cross section, 
surrounded by air, with a potential difference applied 
between the top and bottom surface via massless 
conductors. Since the air provides no restoring force, 
traction free boundary conditions need to be applied on 
the top, bottom and sides of the resonator. Also, 
assume that the dielectric constant of the material is 
large compared to unity, and that the no fringing electric 
field condition must be enforced on the sides. These 
conditions are represented mathematically by, 

n, Qij = 0 

The upper left hand corner of such a device is shown in 
figure 2 by the thick dashed lines. Since the fields do 
not vary in the X3 direction, assume us = 0. 

e,b b b b 

e,a e,i i i i 

a i i i i 

\ 

a 

t 

i i i i 

3—^Xi 

X2 

After [1], the material is assumed to extend one 
node beyond the device. At the nodes labeled "i", (15) 
is applied for j=1,2,4 and k=1,2,4. For the nodes 
labeled "a" both (15) and (16) are applied for j=1,2,4 
and k=1,2,4. However, at the nodes labeled "b" (15) 
and (17) are applied for j=1,2 and k=1,2 only, because 
the potential is known along this surface. At the corners 
the normal vector is discontinuous, and the traction free 
boundary conditions are indeterminate [1]. Instead of 
applying the difference equations at these nodes, the 
displacements may extrapolated from the surrounding 
nodes with an extrapolation equation. As suggested by 
Lloyd and Redwood, the following extrapolation 
equation was used at the nodes labeled "e" for k=1 and 
k=2, to include the corner nodes in the matrix equation. 

,0 1 r n Uk'TlUk 
s e wl 1 r na sw se nw " "• +UkJ + -[^ + Uk + Uk [Uk + Uk + Uk + Uk 

This is a finite difference approximation to. 

3^Uk(o) 1 a%(n) 1 a^Uk(s) 
2 gx- -,..2 

1 = 0 

(18 )  

ax. 3X1 

Figure 2 

and forces the continuity of the second derivatives. 
Following the procedure outlined above for the entire 
mesh, one obtains a sparse matrix equation, the 
solution of which is an approximation for the fields 
within the device. Once these fields are known, the 
parameters of interest (impedance, resonant frequency, 
etc.) may be computed by various methods [1,4]. 

RESULTS 

In order to test the validity of the method, device 
geometries were analyzed where results exist in the 
literature for comparison. In the first example, a two 
dimensional PZT-5H resonator of rectangular cross 
section was analyzed with variational techniques by 
Jungermann et al [6]. This device was then analyzed 
by the finite difference method for comparison of the 
calculated resonant frequencies. 

Frequency (MHz) fj, fp, ^2 fp2 

Measured [6] 0.91 1.22 2.45 2.51 

Theoretical [6] 0.99 1.29 2.47 2.49 

Finite Difference 0.94 1.26 2.46 2.49 

As a second example, in a finite element study 
by Lerch [7] various two dimensional transducers of 
rectangular cross section were analyzed. These 
devices were made of a PZT like material called 
Siemens-Vibrit-420 and in each case are 2mm thick. 
Shown in figures 3-5 are plots of the results to compare 
the finite element and finite difference analysis. The 
forniat follows that of Lerch [7]. 
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Siemens-Vibrit-420 
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Figures 3-5 

In both the examples, the agreement with the 
finite difference method is good. The high frequency 
disagreement with the finite element method is most 
likely due to the courseness of the finite difference 
mesh that was used for the calculation. Also, the data 
given in [7] for Siemens-Vibrit-420 was for lossless 
material, and in this work an imaginary portion was 
added to obtain approximate agreement with the 
coupling strengths observed by Lerch. Some of the 
disagreement may be due to uncertainty in the estimate 
for the imaginary parts of the material constants. 

In a composite resonator structure, a layer of 
nonpiezoelectric material is acousiically coupled to the 
device [3]. To handle this material inhomogeneity one 
may take advantage of the analogy between the finite 
difference equations (15,16,17) and node voltage 
equations from electrical network theory [8]. In order to 
preserve the continuity of the fields across the material 
interface, the finite difference impedances are 
combined in parallel as shown figure 6. 

region 1 

2 z region 2 

region 2 

Figure 6 

For example, the transducer from figure 4 was analyzed 
again except that the device now consists of a 1.5mm 
thick layer of Vibrit-420 and 0.5mm thick layer of silicon. 
The results of the finite difference simulation are shown 
in figure 7. Note that the resonant frequencies of two of 
the modes increase which is consistent with the larger 
acoustic velocity of silicon and suggests that these are 
thickness modes. One of the modes however remains 
virtually unchanged which would suggest that it is 
probably a lateral mode. 

Composite Resonator Analysis 
1.5mm VIBRIT, 0.5mm SI x 1mm 

1 0 0 0 0 0  

1 0 0 0 0  

1 0 0 0  

1 0 0  

1 0 

1 

4.0 1.2 1 0' 1.6 10' 2.0 1 0' 
Frequency (Hz) 

Figure 7 

Two port piezoelectric devices may also be 
analyzed with the finite difference method. The y-
parameters of a two port device are computed by 
grounding one of the ports and applying a potential of 
unity magnitude to the other port. This defines 
boundary conditions for the electric potential function, 
and yii and yai will be equal to currents ii and i2 
respectively directed into the device. The port currents 
are found by numerically evaluating, 

i = jo)j D dS 
•'A (19) 
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where the integral is over the conducting surface, and 
the electric flux density Is found with the finite difference 
method. To find yi2 and yaa the procedure is repeated 
with the other port grounded. For example, consider 
the stacked crystal filter shown in figure 8. 

REGION 1 

REGION 2 

Figure 8 

To determine the frequency response of the filter, one of 
the ports is grounaed, and a unit poiential is imposed 
on the top conductor and zero potential on the 
grounded conductors. The fields within the device are 
then determined with the finite difference method. From 
these fields, currents ii and ia are computed from which 
the y-parameters of the two port are easily found. 
Shown in figure 9 is the result of the analysis of a tall, 
thin two dimensional aluminum nitride stacked crystal 
filter. Note the spurious responses due to the finite 
width dimensions. 

AIN stacked Crystal Filter 
10x2 microns, 31x10 mesh points 
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Figure 9 

CONCLUSIONS 

A finite difference method for the AC steady state 
analysis of two dimensional piezoelectric devices has 
been presented. Transducers of rectangular cross 
section were analyzed and good agreement with 
results from the literature were obtained. The electrical 
networi< analogy with the finite difference equations 
was applied to analyze composite resonator structures. 
Finally, the finite difference analysis of two port devices 
was discussed, and the method was applied to a 
stacked crystal filter topology. 
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APPENDIX B: EM RADIATION FROM BAW DEVICES PAPER 

CALCULATION OF RADIATED ELECTROMAGNETIC POWER FROM 

BULK ACOUSTIC WAVE RESONATORS 

C. F. CAMPBELL and R. J. WEBER 

Department of Electrical Engineering and Computer Engineering 

Iowa State University, Ames, Iowa 50011 

ABSTRACT z 

In this paper, a general technique for calculating 
the radiated electromagnetic fields from an electrically 
small bulk acoustic wave resonator in the vicinity of 
acoustic resonance is presented. The BAW resonator 
is analyzed as an electrically small microstrip antenna 
on a piezoelectric substrate. By the application of the 
surface equivalence principle, the device is replaced by 
equivalent sources. The radiated far fields found from 
the equivalent sources are integrated over the upper 
half plane to determine the total amount of radiated EM 
power as a function of frequency. The result is general 
enough to characterize the electromagnetic radiation 
from arbitrarily shaped metalizations, and the antenna 
pattern and polarization of the radiation may also be 
determined. The theoretical results are experimentally 
confirmed by measuring the radiated EM power spec
trum from lithium niobate and quartz resonators. 

INTRODUCTION 

With the use of piezoelectric films, the operating 
frequency of bulk acoustic wave resonators has been 
extended into the microwave frequency range [1]. As 
the resonant frequency of these devices continues to in
crease, spurious electromagnetic radiation will become 
more of a problem. Some prior work of note has been 
done on radiation from piezoelectric crystals. Mindlin 
and Lee have computed the radiated power from bare 
rotated quartz plates at thickness mode frequencies 
[2,3,4], The work being proposed here differs from the 
prior work of Mindlin and Lee in that a bulk acoustic 
wave device is analyzed as a microstrip antenna with a 
piezoelectric substrate. 

THEORY 

Shown in Figure 1 is a rectangular bulk acoustic 
wave resonator where the piezoelectric layer and 
ground plane are assumed to extend to infinity. Due to 
the large difference between the electromagnetic and 
acoustic wavelengths in the piezoelectric substrate 
material, useful bulk acoustic wave resonators are 
almost always electrically small devices. The BAW 
resonator may be considered electrically small if the 
perimeter is less than 0.3 times the EM wavelength in 
the substrate material [5]. In an electrically small device, 
the conductors are considered equipotential surfaces 

i  L 

Conductor 

Piezoelectric 

Conductor 

Figure 1 

and the electric field is conservative. This is consistent 
with the quasi-static approximation for piezoelectric 
devices where the electric field is assumed to be irro-
tational and is related to the potential function by [6] 

E = -V(t) (1) 

In order to estimate the radiated electromagnetic 
power from the device shown in Figure 1, the radiated 
fields must be found. One way to compute the radiated 
far fields is to apply the surface equivalence principle to 
the structure. The idea behind the surface equivalence 
principle is to surround the source by a closed surface 
S, and place equivalent sources on the closed surface. 
The equivalent sources will produce the same far fields 
outside of the closed surface as did the original source, 
but produce null fields inside the surface. The equiva
lent sources are electric and magnetic surface currents 
given by the following [7]: 

Ms = E x n (2) 

Js = n X H (3) 

The fields E and H are the actual electric and magnetic 
source fields that exist within the resonator. Since the 
electric field is assumed to be irrotational, the magnetic 
field of the device is equal to zero and only Eq. (2) 
needs to be considered. Summarized in Figure 2 is the 
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SURFACE EQUIVALENCE PRINCIPLE 
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Figure 2 

evolution of the electromagnetic radiation model for the 
BAW resonator. 

First, the surface equivalence principle is applied 
by surrounding the structure with a closed surface 8. If 
the conductors can be assumed to be perfect, the tan
gential electric field at the conductor surfaces must be 
zero and the magnetic surface current placed on the top 
and bottom of the closed surface S is also zero. The 
magnetic surface currents on the sides of the surface S 
are not zero and are the main source of the radiated 
fields as shown in the second part of Figure 2. Note, 
that in the radiation model, a ribbon of magnetic current 
density placed at the periphery of the device. Since the 
thickness of the substrate is on the order of an acoustic 
wavelength, it is electrically very thin, and the effect of 
the substrate on the radiated far fields is negligible [8], 
The magnetic current density can then be integrated 
over the substrate thickness and condensed into a 
filamentary magnetic current loop K over an infinite 
ground plane as shown in the third illustration of Figure 
2. The ground plane can then be removed with image 
theory, and the radiation model valid for the upper half 
plane is shown in the last part of Figure 2. 

From Eq. (2), the magnetic current at the sides of 
closed surface S for an arbitrary electric field is equal to 

K = X Kx + y Ky = I Ms dz = I E X n dz 
Jo Jo 

=  (zxn)j Ez dz = -V(zx n) (4) 
Jo 

The radiation model for the BAW resonator, valid for the 
upper half plane, reduces to a loop of magnetic current 
placed at the periphery of the device as in Figure 3. 

2K 

Figure 3 

From Eq. (4), the magnitude of the magnetic current is 

equal to the voltage applied to the resonator. Since the 
conductors are assumed to be equipotential surfaces 
and the electric field conservative, this result is also 
valid for a three dimensional bulk acoustic wave reso
nator. A three dimensional device is a multiple mode 
structure and its electric field will be some complicated 
function of x,y and z. However, since the electric field is 
conservative, the line integral from one conductor to the 
other over any arbitrary path is equal to the voltage 
applied to the device. Assuming that the device is 

driven by a voltage source Vg with source impedance 
Zo, from elementary circuit analysis the voltage across 
the device is equal to 

V = Vs-%-
^in+Zo (5) 

where Zjn is the impedance of the resonator. 
The magnetic current in the radiation model can 

be computed with Eq. (4) once the input impedance of 

the device is known. Thus, if the impedance of the 
resonator is available via the Mason model, finite 
element computation, or measurement, Eq. (4) is valid 
as long as the device can be considered electrically 
small. The radiated far fields from an arbitrary loop of 
magnetic current impressed on the ground plane are [7] 

Eo(r,e,(p) = — [kx(U,v) sincp - Ky(u,v) costp j 
2jtrior 

(6)  

E,p(r,0,(p) = — COS0 [KX(U,V) cos(p + Ky(u,v) sincp ] 
2jtTior 

(7) 
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The Fourier transforms of the source are defined as 

where 

Kx(u.v)=f 

Ry(u.v) = |^Kye«"''"^'?-dl 

u = l<o sine cos(p V = l<o sin0 sincp 

(8 )  

(9) 

ko = (oVeo Ho f ] o  =  y  — 

„-12 7 , 
£0 = 8.854x 10 F/m Ho = 47tx10 H/m 

The total amount of electromagnetic power that is 
radiated by the bulk acoustic wave resonator into the 
upper half plane is equal to 

P rad 
=-/ / 

Tlo Jo Jo 

2K ft02 1^ 
0 Ee + <p E<p 

RESULTS 

r sine de dtp 

(10) 

Consider the electrically small resonator shown 
in Figure 1. From Eqs. (8,9) the Fourier transforms are 

Kx(u,v)=^(1.e^h(1-en 

Ky(u.v) = .j^(1.ei^(1.e""') 

(11) 

(12) 

For the case of a rectangular resonator, the radiated far 
fields may be written in closed form as a function of the 
impedance of the device. Examining Eq. (5), one would 
expect a drop in the radiated power at series resonance 
and an increase in the radiated power at parallel 
resonance. 

To verify this, 5cm by 5cm bulk acoustic wave 
resonators were fabricated on 3 inch AT-cut quartz and 
Z-cut lithium niobate wafers. The quartz and lithium 
niobate wafers are ll.Smil and 19.1 mil thick respec
tively, and the metalization is 0.9 microns of aluminum. 
The back side of the wafers are completely metalized, 
and the resonators are patterned on the front side. To 
apply the theory, the resonators were considered one 
dimensional and the input impedance was estimated 
with the Mason model [6], The predicted total radiated 
power from the resonators for a 10V-50ohm source is 
plotted in Figures 4 and 5. The analysis was done for 
the fundamental thickness mode resonance of the 
quartz device and the first overtone thickness mode 
resonance of the lithium niobate resonator. Note that 
for both cases, the theory predicts a decrease in the 

Total Radiated Electromagnetic Power 
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Œ .100  

5.615 10® 5.640 10® 5.665 10® 5.690 10® 5.715 10® 
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-70 

Total Radiated Electromagnetic Power 
19.1mil Z-lithium niobate, 1st Overtone 

2  - 8 0  

-90 

-100 

2.2550 10' 2.2675 10' 2.2800 10' 2.2925 10' 2.3050 10' 
Frequency (Hz) 

Figures 4-5 

radiated power at series resonance and an increase in 
the radiated EM power at parallel resonance. Viscous 
damping loss was included in the calculation by the use 
of a complex elastic constant 

c = c -f jwr) 

where an estimate of the viscosity is obtained from the 
reported attenuation constants for quartz and lithium 
niobate [6,9]. 

To experimentally verify the theoretical results, 
the devices were driven by an HP8753A network ana
lyzer, and the radiated power was picked up by an AM 
loopstick antenna. The AM antenna is connected to an 
HP3585A spectrum analyzer that is set in a peak hold 
mode so that the detected power may be displayed as a 
function of frequency. The goal of this experiment was 
to verify the shape of the radiation spectrum predicted 
by theory and not to attempt to measure the total power 
radiated by the resonator. What is predicted by theory 
is the total power radiated by the device when the 
Poynting vector has been integrated over the entire 
upper half space. For the experimental results, just the 
power picked up by the AM antenna is plotted. Thus, 
the absolute magnitude of the measured power spec-
trums cannot be compared with what is predicted by the 
theoretical calculation. 
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Shown in Figure 7 is the measured radiated EM 
power for the quartz resonator near the fundamental 
thickness mode. The radiated power from the lithium 
niobate device near the first overtone of the thickness 
mode is plotted in Figure 8. In both cases the radiated 
power drops off at series resonance and increases at 
parallel resonance. For the measurements, the output 
power of the network analyzer was set to 23dBm in 
order to get the detected signal level well above the 
noise floor of the spectrum analyzer. The measured 
radiated power spectrum is in excellent agreement with 
the theoretical computation with the exception of the 
spurious lateral modes which will not be predicted by 
the Mason model. Also consistent with the theoretical 
results is the relative magnitude of the radiated power 
increase at parallel resonance which is large for the 
lithium niobate device and small for the quartz device. 
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CONCLUSIONS 

A technique for the calculation of the radiated 
electromagnetic power from electrically small BAW 
resonators has been presented. The mettiod is valid for 
general BAW resonators as long as the impedance of 
the device is available. The theoretical results for the 
radiation spectrum were experimentally verified for AT-
cut quartz and Z-cut lithium niobate resonators, and 
good agreement was obtained between experiment 
and theory for the shape of the radiation spectrums. 
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